
Fault-Tolerant Framework for Load Balancing System
Y. K. LIU, L.M. CHENG, L.L.CHENG
Department of Electronic Engineering

City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong SAR

HONG KONG

Abstract: In this paper, a fault-tolerant framework for load-balancing system is proposed. Load Balancing is widely
used in the market, however, they usually cannot recover the unfinished jobs under stateful protocol such as TCP. In
the practical situations, duplicating servers are commonly used to handle this problem, but the cost of the system and
maintenance for those systems are expensive. In the proposed framework, we solve the problem with a contention
method. Servers are grouped together and share the information of clients’ connections and monitor others servers in
their group. When a server in a group does not response the other members, they will elect one server to take over the
job of it and the whole process is totally transparent to the user.

Key-Words: Load-Balancing, Fault-tolerant, Stateful Protocol, Contention based, Connection Recovery

1 Introduction
As web technology is rapidly growing, the performance
and reliability of the web systems is a great concern of
many companies. Load balancing technique is usually
used in the high traffic systems [1]. Load Balancing
System distributes the workload of a specific service to
a group of functional computers according to each
server’s situation, so the performance of the whole
system will be enhanced.
The most popular Load Balancing approach is using a
computer or router or DNS server to act as a job
distributor [2]. According to the job distribution
algorithms, the distributor redirects the incoming job
from clients to the servers fairly [1, 2, 3].
Load-Balancing algorithm makes web system more
reliable because it provides basic fault tolerant function
for the systems. The load-balancer monitors the status of
backend servers. It will not forward new jobs to a server
if it finds that server is downed, so the systems can

continue to work normally, if only some of servers
downed. However, load-balancing system will not
recover the connections which are held by the servers
which are out of services. If stateful connection
protocols such as TCP are used, the connections will be
abandoned by the system. And the clients have to
reconnect to the system again after the protocol timeout
[4]. That is not acceptable for the most type of
services provided though the Internet such as online
game and remote terminal.
In this paper, a framework for fault-tolerant load
balancing is proposed. This framework is based on
traditional centralized load balancing structure and it
enhances the fault recoverability of the whole system.
Under this framework, the failed connection can be
redirected to the other servers transparently.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp151-155)

2 Fault-Tolerant for Traditional Load

Balancing
Fault-tolerant function is one of important features of
Load Balancing algorithm. The load-balancer checks the
healthiness of each server periodically. If a failed server
was found, no more new job will be assigned to that
server. The remained servers in that system will share
the workload of the failed server. Although the
performance of the services will be degraded, the
services of the system will not be affected when a
backend server downed. However, it cannot recover the
current connections of the failed server. All of them will
be lost when a server downed. Users have to wait for the
connection timeout and reconnect to the system again.
Also, it will cause other problems such as transaction
and data losses. There are few methods to reassign the
unfinished connections to the other servers such as
ST-TCP [4], however, the redundancy of system
resources is high. Thus, the cost of the system and
maintenance is relativity high in such algorithm.

2.1 ST-TCP Protocol
ST-TCP Protocol relies on the existence of an active
backup TCP server that takes over the TCP connections

case of primary TCP failure [4]. The heartbeat packets
send periodically from the primary server to the backup
server to monitor the healthiness so the primary server.
Whenever a primary is downed, the backup server will
continue the connections accepted by the primary server.
The backup server is a clone of the primary server, so it
can completely restore the connections. And the transfer
from primary to backup server is transparent to the
clients.
In this algorithm, the ratio of the primary server and the
backup server is 1:1. That is not an efficiency way to
implement the fault-tolerant solution.

2.2 M-TCP
The M-TCP is a Protocol under Layer 3 and 4 and
providing connection migration service []. When a client
starts a connection to the server, the server will supply
the addresses of its cooperating servers. The client-side
M-TCP initiates migration of a connection by opening a
new connection to a cooperating server. And the server
will synchronize the status information of the
connection with the original server. This process has to
be initiated by the client and it is assume that the
original server can provide the status information to the
target server.

3 Structure of Fault-Tolerant
Framework

In the proposed framework, the clients’ connections can
be recovered in the failure of servers. Also the resources
redundancy in the structure is very low. Load balancer
and backend servers are connected by two separate
communication networks -- a "load distribution
network" and a "control signal network". While the first
one is used for load balancing purposes, the other one is
mainly used for backup and recovery. The structure is
shown in Fig.1.

Fig.1: Network topology of the Fault-Tolerant Protocol.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp151-155)

When a server received a packet form the load-balancer,
it determines the time (Tn) required for the next
broadcast packet. Next, it packs Tn and other control
information with the original packet received from the
load-balancer and broadcast it to the peer server in the
same group. Whenever a peer server received these
packets, it will store them in the cache for error recovery.
To minimize the overhead of status storage and usage of
bandwidth, the backend servers can be divided into
groups, so that each server will handle the packets from
only parts of servers in the system.

3.1 Failure Recover of System
As mentioned before, when a server broadcasts a packet,
the packet includes an item that shows the time limit for
the next broadcast packet and the server will send out
another packet within that time. A timer will be set when
a server receives a broadcast packet from the same
group and it will be reset if another packet is received

form the sender. If the sender cannot send out a packet
within that period, it will broadcast an extend-reply
message to acknowledge the other peer server that it is
currently working. Otherwise, the other servers will
assume the sender was malfunctioned and try to handle
the connections of it if the timer is timeout.

3.2 Contention Phase
When a failed server is detected in the system, the
protocol will enter contention phase. In this phase, the
peer servers in the same group will elect one server
handle the unfinished jobs of it. First, servers broadcast
a “Req packet” which contains the identify number of
the downed server after a predefined delay. It is the
message to inform other servers that it is ready to handle
the unfinished connection. The delay is defined to be τ +
P(Server) where τ is the random time delay of job
recover, and P is priority of each backend server
determined by the administrators. And the servers will
wait an interval T1 after the Req packet is send. If other
Req packets from other peer machine are received
before the end of the interval, it waits another longer
interval and sends Req packet again until Req packet
from other servers is received before delay time finished
or after the next T1 interval finished. For each
unsuccessful request, the T1 will be changed:

Delay[n] = 2*(Delay[n-1]+ τ) (1)
After the T1 period, if there is no Req packet received
from other servers, it will send out a GUJ packet which
is an acknowledgment to the peer servers that it won in
the contention phase and the server will wait T2 interval.
This server will start to handle the connections if there is
no other GUJ packet is received within T2. If GUJ
packets received within T2, the process starts the
contention phase again by sending out the Req packet
with interval τ + P(Server). After the server take over
the unfinished job, the connection can be recovered with
the status storage in the cache. The detail of the

while(true){
 If(Heartbeat of Server1 timeout){
 Delay=τ+P
 while(true){
 Wait(Delay)
 if(Req or GUI is received)
 break;
 Broadcast(Req)
 Wait(T1)
 if(GUI is received)
 break;
 if(Req is received){
 Delay=2*(Delay+τ)
 continue;
 }
 else{
 Broadcast(GUJ)
 Wait(T2)
 if(GUI is received){
 Delay=τ+P
 continue;
 }
 Recover the unfinished connections
 break;
 }
 }
 }
}

Fig.2 Algorithm of a server in Contention Phase

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp151-155)

algorithm is shown in Fig.2.

4 Simulation
Simulations are performed to investigate the servers
switching time during server failure occur. NS is used as
the simulating program.

4.1 Environment Setting of Simulation
The framework is simulated under the topology showed
in the Fig.3. It contains 300 clients and 100 servers, and
they are connected via a load-balancer though external
network. At the same time, servers are grouped together
and each server in a group was connected with star
topology as internal network. Each client was connected
to the load-balancer with 10Mbps link, and 100Mbps
were used in the internal network. Each client generates
job requests to the load-balancer at a random time and
these jobs were distributed to the servers by the
load-balancer. To distribute the jobs to the servers fairly,
Random Distribution Algorithm was used in the
simulation. Servers process the job requests from clients
and return the results to them with source address in

Parameters of network

External Link Capacity 10Mbps

External Link Propagation Delay Random 10-50ms

Internal Link Capacity 100Mbps

Internal Propagation Delay 20ms

Server Operation Delay Random 10-20 ms

Rate of Request of Client Random 3.75-18.75

per sec.

Average size of request packet 1000 bytes

Average size of reply packet 2000 bytes

Table1: Parameters of network

Simulation parameter

T1 80ms

T2 80ms

Max τ 160ms

P() Fixed 8ms

Table2: Simulation parameter

incoming packets. Also each server distributes the
incoming packets through multicasting method.
Centralized Multicast Protocol [5] is used in the
simulation. Detail of environment in the simulation is
showed in Table 1.

4.2 Simulation Result
In this experiment, the relationship between size of
server groups and the job switching duration in server
failure is determined. Server failure is simulated in a
straight forward way by switching off the corresponding
computer. We put different numbers of servers into a
server group and the time required for job switching
between servers during server failure occur are recorded.
For each case, the experiment is repeated 10 times, and
the average duration time will be used as result. The
result of the experiment is showed on Fig.4. Parameters
of the simulation are list on Table 2.
Fig.4 shows the switching time of connection in the
server failure. As could be expected, the switching time

Fig.3: Topology of simulating

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp151-155)

of the connections between servers is proportional to the
number of servers in the server group. All the
connections switching times in the experiments are less
then 1.07sec. And reach minimum 0.49sec at 10 servers
in a group.

Conclusion
ve proposed a structure to provide

eferences
C. and Chanson, S. T. “Improved Strategies

i, V., Colajanni, M. and Yu, P. S.,

, M., Mishra, S. and Fetzer, C., “TCP Server

ulticast

5
In this paper we ha
fault-tolerant function in load-balancing systems. Under
this framework, a low cost and high efficient
load-balancing system with fault tolerant function can
be build. Compared with the solution based on backup
server method which highly duplicates the resources in
system, this framework minimizes the cost of the system.
In addition, the clients do not notice any server failure
during the connection recovering time. Moreover, no
special wrapper or libraries are needed in the client
machines. It is obvious that the proposed scheme is a
cost controlled solution to enhance the reliability of
load-balancing system..

R
[1] Hui, C.

for Dynamic Load Balancing,” IEEE Concurrency, vol.
7, July 1999.
[2] Cardellin
“Dynamic Load Balancing on Web-server Systems,”
IEEE Internet Computing, 3(3):28--39, May/June 1999.
[3] Wolf, J. L. and Yu, P. S., “On balancing the load in a
clustered web farm”, ACM Transactions on Internet
Technology (TOIT), v.1, n.2, November 2001,
p.231-261.
[4] Marwah
Fault Tolerance Using Connection Migration to Backup
Server”, Proc. Of IEEE Int. Conf. on Dependable
Systems and Networks (DSN 2003), June 2003.

[5] Paul, P. and Raghavan, S. V., “Survey of M

Fig.4: Average Time of Job Switching at different Group

Routing Algorithms and Protocols.”, Proceedings of the
Fifteenth International Conference on Computer
Communication(ICCC 2002.

Size

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp151-155)

