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Abstract: Source routing of packets in the Internet requires that a path be selected in advance and stored at the 
source nodes.  Path selection is typically based on Quality of Service (QoS) criteria like packet delay, delay 
jitter, and loss. A new protocol called the “Cognitive Packet Network” (CPN) [18, 19, 20, 21] has been 
proposed which is capable of dynamically choosing paths through a store and forward packet switching 
network like the Internet so as to provide best effort QoS to peer-to-peer connections. A CPN-enabled network 
uses smart packets to discover routes based on QoS requirements; acknowledgement (ACK) packets to deliver 
the routes back to source nodes; dumb packets to carry user-payload; and reinforcement learning to conduct 
path selection. We extended the path discovery process in CPN by introducing a genetic algorithm (GA) that 
can help discover new paths that may not have been discovered by smart packets [28]. In this paper, we further 
extend CPN with GA by prioritizing paths discovered based on their ages, adopting a progressive fitness 
evaluation system, and introducing a new genetic operator – mutation. The simulation topology has also been 
upgraded from a 10 by 10 grid to an arbitrarily connected network. We detail the design of the algorithms and 
their implementations, and finally report on resulting QoS measurements.
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1 Introduction
Source routing protocols in a store and forward 
packet switching network like the Internet 
dynamically select paths for packets while they are 
being transmitted. The resulting paths are stored at 
source nodes for subsequent packets to use. 
Typically, routes are selected based on some pre-
defined criteria of performance, for instance, “the 
shortest path”, or “the smallest number of hops”, or 
“the cheapest path”[14]. To fulfill the real-time 
requirements imposed by the multimedia 
applications, which are more and more popular 
nowadays, Quality-of-Service (QoS) type of 
considerations are taken into account when selecting 
a route, for example, “a quickest path”, or “a path 
with the lowest packet loss rate”, or both, etc. 
Furthermore, the route selection process has to be 
dynamic such that it can quickly adapt to the 
changes in the network [9,10,11,13]. Upon leaving 
the source, packets carrying the payload also carry a 
complete route that will lead it from the source to 
the destination. At each intermediate router, all what 
is left to do is to extract the next hop from the path 
and pass the packet down the road accordingly. 

Cognitive Packet Network (CPN) has been proposed 
to provide best effort QoS to route user traffic. It 
uses smart packets, which are just a small fraction 
of the overall user traffic, to select routes based on 
the user’s QoS “Goals”. Acknowledgement packets 
(ACK) are the messengers who will carry the 
selected path along with QoS measurement data 
back to the source nodes. This path discovery and 
update process continues throughout the user’s 
session, and the most recently found best path is 
used by the dumb packets that actually carry the 
user payload to the destination. The robustness of 
CPN to maintain traffic flow in the presence of node 
and link failures has been described in recent papers 
[20, 21, 22], while extensions to a wireless 
environment was first presented in [23]. It is the 
CPN-enabled routers who make the CPN intelligent. 
Those routers process both smart packets and ACK 
packets going through them by running 
reinforcement learning [16] based on the random 
neural network model (RNN) [3,4,5,8,24]. The 
weights of connections in the random neural 
network at each router are updated based on 
measurement data collected by smart packets and 
ACK packets, and the state of the network is 
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computed in order to reward good routing decisions 
in the past and punish bad ones and make the best 
routing decisions for the subsequent packets.
An important improvement of CPN is to include a 
genetic algorithm (GA) that can help evolve new 
paths that may not have been explored by smart 
packets [27, 28]. Candidate routes found by smart 
packets and brought back by ACK packets are GA 
individuals. GA, which runs on the background at 
the source nodes only, selects parents from a pool of 
such individuals based on their fitness values with 
respect to user defined QoS requirements. Offspring 
individuals are generated as a result of GA 
crossover operation, and added back to the pool, 
from where the hosting node will pick the best route 
for the packets sent in the future.
In this paper, we further extend CPN with GA in the 
following ways. Since recent updates to a packet 
route tend to override and invalidate the old ones, 
GA individuals that represent packet routes are aged 
and thus prioritized. Consequently, new individuals 
have a better chance than old ones to be picked as 
parents for the subsequent reproduction. We then 
describe a progressive fitness evaluation system that 
evidently makes GA evolve better and quicker. In 
addition to crossover, a new GA operator – mutation 
is introduced. The randomness given by the 
mutation guarantees that GA is not trapped on a 
local optimum and converges quicker. We will 
conclude the paper by presenting the experiment 
results obtained on our simulator, which has also 
been upgraded from a simple 10-by-10 grid to an 
arbitrarily connected network. As witnessed by the 
results, both average packet delay and packet loss 
have been considerably improved thanks to the 
extensions.

2 Cognitive Packet Networks
The Cognitive Packet Network (CPN) architecture 
offers QoS-driven source routing to peer-to-peer 
user connections. Routers in the network that are 
CPN-enabled establish a virtual network on top of 
the existing IP network. CPN is designed to be QoS 
oriented, intelligent, and secure. 

2.1 Packets in CPN
CPN contains three types of packets. Smart packets 
or cognitive packets route themselves and try to 
minimize the chances of being delayed or even 
destroyed by avoiding the congested areas. Smart 
packets learn from their own experiences about the 
network and from the experiences of other packets 
through mailboxes in the routers. They 

progressively refine their own model of the network 
(called Cognitive Map, or CM) and deposit QoS 
measurement data in the mailbox if needed as they 
travel through the network (See Fig. 1). 

Mailbox

Smart Packet carrying
CM

DepositWithdraw

Router running Reinforcement
Learning

based on RNN

Smart Packet carrying
updated CM

Fig. 1 Smart Packet and a CPN-enabled Router

Upon arriving the destination node, a smart packet 
will trigger to generate an ACK packet, which stores 
the reverse route and the measurement data 
collected by the smart packet. The ACK packet will 
travel along the reverse route back to the source, 
with loops on the path skipped, if any.
Dumb packets carry the user payload and use source 
routing. They use the best route so far discovered by 
smart packets and brought back by ACKs until 
another even better path is found. Such a selection is 
often made based on pre-defined QoS criteria like 
smallest packet delay and loss.

2.2 Reinforcement Learning based on RNN 
in CPN

In each router, a Random Neural Network (RNN) 
exists both for storing the weights and making 
decisions. When a smart packet arrives at a router 
searching for the best next hop, RNN extracts 
information like the QoS goal from the Cognitive 
Map (CM) of the smart packet and existing 
measurement data from the mailbox, updates the 
weights of the network with reinforcement learning 
algorithm, a trial-and-error type of unsupervised 
search, so that past decisions are reinforced or 
weakened depending on whether they have been 
observed to contribute to increasing or decreasing 
the accomplishment of the declared QoS goal. 
Suppose the packet delay and packet loss rate from 
a source node S to a destination node D are denoted 
as W and L respectively, the goal from S to D could 
be expressed as in the following equation.

W

L
DSG




1
),( (1)

The adoption of the reinforcement learning in CPN 
was inspired by its uses in navigation in a maze 
[16].
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The simulations, analysis, and implementations on 
test-beds have revealed that this simple approach 
appears very effective for dynamic routing of the 
smart packets [18,19,20,21]. New developments on 
CPN are presented in [25, 26].

3 Packet Routing with Genetic 
Algorithms
As we described so far, Reinforcement Learning 
algorithm based on Random Neural Networks 
(RNN) is running on all the CPN-enabled routers for 
smart packets to learn and react to the ever-changing 
and unpredictable conditions in the network. As a 
result, ACK packets keep bringing paths along with 
the corresponding QoS measurement data
discovered by smart packets back to the source 
nodes. In order to optimize the best-path-selection 
decision made for subsequent dumb packets based 
on these candidate paths, Genetic Algorithm (GA) is 
adopted. GA runs on the background at the source 
nodes only and serves as an evolutionary 
mechanism that encodes the knowledge learned by 
smart packets and evolves optimized routes for 
dumb packets to use [28]. 

3.1 GA in General
A Genetic Algorithm (GA) is to simulate the natural 
evolution as a search and optimisation algorithm 
that operates over a population of encoded candidate 
solutions to solve a given problem [1,2,6,7,12]. The 
Key components that distinguish GA from other 
searching algorithms are:
 A population of individuals where each 
individual represents a potential solution to the 
problem. Individuals are typically binary strings of 
various lengths and each bit in the string is called a 
gene.
 A fitness function that evaluates the healthiness 
of each individual as a solution.
 A Selection algorithm that selects a pair of 
individuals for mating from the current population. 
Parent individuals are selected with a probability 
related to their fitness. The most popular selection 
algorithm is Roulette Wheel Selection.
 GA operators. As reproduction takes place, the 
crossover operator exchanges two individuals, 
whereas the mutation operator changes the gene 
value at some randomly picked location of an 
individual.

3.2 A GA Approach to Packet Routing
GA works as an enhancement of CPN packet 
routing. We will dedicate this section to the 

discussion of GA as a novice approach to packet 
routing. In the next section, we will see how GA is 
integrated into our CPN framework and works 
interactively with the other existing components in a 
CPN-enabled source node, which is typically
located on the edge of the Internet.

3.2.1 GA Route Individuals
Every complete route discovered by smart packets 
and brought back by ACKs naturally becomes an 
individual (called route individual) in the GA 
population. Route individuals are of different 
lengths such as to allow GA more flexibility to the 
changes in the network. Each gene in the route 
individual represents a router along the route. For 
any nodes a and b, ab is a sub-sequence in a route 
individual w from S to D if and only if there is a link 
that connects a and b. Thus w always represents a 
viable path from S to D.
GA runs periodically on the background at source 
nodes. At the beginning of each run, the initial 
population of GA individuals is received from the 
traditional CPN part. By that, CPN keeps feeding 
GA with newly discovered routes along with QoS 
measurement data and the corresponding time 
stamps (for the purpose of aging routes). Note, in 
one population, route individuals for different 
destinations are all mixed (in section 3.3, we will 
discuss another pool of routes – Dump Packet Route 
Depository, where routes for different destinations 
are categorized into different sub-stacks). Also note 
that the QoS measurement data experienced by 
smart packets and brought back by ACK packets 
expressed in the format of goal function (Equation 
1) allow us to collect at the source not only just the 
source to destination delay and loss, but also the 
delay and loss from any intermediate node the 
destination, and from source to any intermediate 
node, and also deduce the forward delay and loss 
from any node to any other node on the path. This is 
so significant because it allows possible the GA 
crossover and mutation operations that we will 
discuss in section 3.2.4 and justifies their 
correctness.

3.2.2 Prioritize GA Route Individuals by Their 
Ages

Suppose a route individual R(S,D) which represents 
a route from S to D has the measured goal  value 
G(S,D) and time stamp Tg. Tg is defined as the time 
at which the ACK packet brought R(S,D) back to S. 
Also say the current time is Tc. The following aging 
function A(S,D) is used to prioritize R(S,D):
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This is done to appreciate the fact that the fresher 
the information, the more valuable it is to our 
purpose of packet routing. When selecting parents 
for reproduction, we want to make up the decision 
based as much as possible on the most recent 
measurements.

3.2.3 Progressive Fitness Evaluation
Then, suppose the A value (expression 2 above) of 
the route currently being used by dumb packets 
from S to D is C(S,D), the following progressive 
fitness evaluation function f(S,D) is used to evaluate 
the fitness of R(S,D):

if 5.0)),(),((  DSCDSAsigmoid       

)),(),((),( DSCDSAsigmoidDSf  (3)
else

)),(),((),( DSCDSAsigmoidDSf   (4)

where α, β are largely separated constants (like
α=10, β=0.1) and the sigmoid function is defined as 
following:

xe
xsigmoid 


1

1
)( (5)

One one hand, if A(S,D), which essentially is the 
measured goal value of a route R(S,D) from S to D
prioritized based on its age, is greater than the A
value of the route that is actively being used now, 
the larger the difference between the two figures, 
the larger the fitness value we assign to R(S,D), and 
the larger the chance it will be picked during the 
parent choosing process; on the other hand, if the 
route under study R(S,D) does not perform better 
than the one currently in use, we assign R(S,D)
some small fitness value, and the larger the 
difference, the smaller the fitness R(S,D) gets, and 
the smaller the chance it will be picked as parent.

3.2.4 GA Operators
Once two parents 1w  and 2w are selected with 
probability related to their fitness values (typically 
done through Roulette Wheel Selection Algorithm),  
the following GA operators are applied.
 Crossover with probability Pc (typical valued as 
0.7~0.8). Suppose 1w  and 2w share some 

intermediate node α. We have 111 vuw  and 

222 vuw  . The crossover will then generate 

offspring individuals 213 vuw  and 124 vuw  . 

Since the goal values are additive, we have 
)()()( 213 vGuGwG    and 

)()()( 124 vGuGwG   .

 Mutation with probability Pm (typical valued as 
0.01~0.02). This is conducted on 3w  and 4w in 

sequence. Let’s take 3w  as an example. An 

intermediate node β (except the source and the 
destination) on 3w  is randomly picked, so 3w  can 

be expressed as vuw 3 , where θ is the 

predecessor of β on 3w . Then we randomly choose 

one of θ’s successors except β, say γ. Suppose one 
of the known downstream routes starting at γ is γx 
and it is the one with the smallest observed goal 
value among all the known downstream routes, we 
mutate the original 3w  in the following way 

xuw 3 . Note, x could be empty. 

The evolution process described above continues 
until some predefined termination condition is 
satisfied, for example, the maximum number of 
iterations has been exceeded. During the whole 
process, GA attempts to maintain the balance 
between the exploration for generating new routes 
and exploitation of discovered information. As a 
result, GA is expected to find some better routes that 
have not been found by CPN.

3.3 Integrate GA into CPN
The performance of GA described above depends 
largely upon the following two factors: the extent to 
which GA route individuals are able to interact with 
each other to produce effective offspring. This is 
mainly achieved through GA operators. Another one 
is the level of the population diversity, i.e., the 
number of different route individuals.
Although GA crossover and mutation are expected 
to result in generating new individuals and 
consequently diversify the GA population, the input 
from CPN is considered as a major and valuable 
source of diversity for the CPN population as well 
as an indication of the state of CPN (which could 
provide indirect pressure as to the direction in which 
GA should evolve next) [28].
Fig.2 summarizes how GA is integrated into and 
works together with the traditional CPN framework.
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Fig. 2 GA interacts with CPN

On one hand, routes discovered by smart packets 
and brought back by ACK packets are stored in 
Dump Packet Route Repository, or DPRR at the 
source node, say S. DPRR is organized such that 
routes leading to the same destination are group 
together. In each group, routes are sorted based on 
their QoS performance, i.e., the observed goal 
values. Each route is also associated with a time 
stamp at which that route was added to the table. On 
the other hand, GA population is a mixture of 
discovered routes leading to different destinations.
CPN initiates GA population and keeps feeding it 
with newly found routes. Once started, GA works 
on the background to evolve new routes. It feeds 
back CPN with its best offspring routes and 
consequently enriches DPRR such that the hosting 
source node could have better and more alternatives 
to choose from when dump packets carrying user 
payload are ready to send. 

4 Simulation Experiments
A network simulation program is used to 
demonstrate the effectiveness of the extensions we 
made to our previous CPN with GA. The simulator 
itself was upgraded from a 10-by-10 grid to a 
network with nodes and connections arbitrarily 
definable and modifiable. In order to make it even 
closer to the reality, areas in the network could be 
dynamically configured as either high congested 
areas, or areas with high packet loss rate, or both. 
Smart packets are observed being able to quickly 
react to the changes in the network, skip the 
dangerous areas, and manage to find best 
alternatives to their destinations.
We compare the performance of CPN with extended 
GA, CPN with GA, and traditional CPN on a 
network with 50 nodes that are arbitrarily and 
redundantly connected. Three areas with 4 nodes 

each are designated as high-traffic zones (packets 
traveling through these areas will experience big 
delays and even losses). Fig. 3 refers to average 
end-to-end delay versus normalized traffic rates. 
Fig. 4 plots the packet loss rate versus traffic rates. 
Our results clearly reveal marked improvement in 
performance with respect to both delay and loss 
thanks to our extensions to CPN with GA.

Delay versus Input Rate (Pc= 0.8, Pm = 0.02)
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Fig. 3 Simulation Result: Average Packet Delay

Packet Loss Rate versus Input Rate (Pc= 0.8, Pm = 0.02)
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Fig. 4 Simulation Result: Average Packet Loss Rate

5 Conclusions
Extensions we made to the Cognitive Packet 
Network with Genetic Algorithms (CPN with GA) 
include: Prioritizing routes based on their ages such 
that when GA selects routes as parents for 
reproduction, newly discovered routes have better 
chances. Progressive fitness evaluation is adopted to 
deliver faster GA convergence. Also, mutation is 
introduced as a GA operator to generate offspring 
route individuals. As we showed in the QoS 
measurement results obtained from the simulations, 
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thanks to theses extensions, we observed dramatic 
improvements with respect to both delay and loss, 
the two most important QoS expectations.
Future work include some refinement and 
optimizations of the Genetic Algorithms in CPN 
such as to minimize the impact in terms of 
computational speed at the source nodes caused by 
the execution of the GA process on the background.
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