
An Incremental Temporal Partitioning Method for

Real-Time Reconfigurable Systems

HAMID R. AHMADIFAR, FARHAD MEHDIPOUR*, MORTEZA S. ZAMANI*, MEHDI SEDIGHI*

and KAZUAKI MURAKAMI**

 Engineering Faculty

Guilan University,

Rasht, p.b. 41635-1844

IRAN

*IT and Computer Engineering

Department

Amirkabir University of

Technology

#424 Hafez Ave.,Tehran

 IRAN

** Department of Informatics,

Graduate School of Information

Science and Electrical

Engineering

Kyushu University

6-1 Kasuga-Koen, Kasuga,

Fukuoka 816-8580

JAPAN

Abstract: In this paper, a temporal partitioning algorithm is presented which partitions data flow graphs in a real-

time domain. Timing constraint is a critical factor in temporal partitioning of real-time reconfigurable design. An

incremental algorithm is presented to partition data flow graphs while meeting the timing constraints by obtaining

the target number of partitions. In addition, the proposed algorithm attempts to minimize the logic resources used

for implementing the real-time application. In this algorithm, selecting the appropriate nodes and moving them

between subsequent partitions results in more area balanced partitions and less number of partitions.

Key-Words: Reconfigurable computing system, Temporal partitioning, Real-time system, Data flow graph.

1 Introduction
Recently, field-programmable gate arrays (FPGA)

have played an important role in the realization of real-

time reconfigurable applications. We discuss here the

partitioning problem for run-time reconfigurable

systems (RTR). In the task of implementing an

algorithm on reconfigurable hardware, two approaches

could be distinguished [1]. In the first case, we have to

fit an algorithm with an optional time constraint in an

existing system made from a host CPU connected to a

reconfigurable logic array. In this case, the goal of an

optimal implementation is to minimize one or more of

the following criteria: processing time, memory

bandwidth, number of reconfigurations and power

consumption. In the second case, we have to

implement an algorithm with a required time constraint

on a system throughout the design exploration phase.

The design parameter is the size of the logic array that

is used to implement the data-path part of the

algorithm. Here, an optimal implementation is the

one that leads to the minimal area of the reconfigurable

array.

Previous works in the field of temporal partitioning

and synthesis for RTR architecture [2–10] assume that

the reconfigurable resources are limited. In this case,

the goal is to minimize the processing time and/or the

memory bandwidth requirements. Among the previous

works, there is a GARP project called GARP [2]. The

goal of GARP is the hardware acceleration of loops in

a C program by the use of a data path synthesis tool

namely GAMA [3] and the GARP reconfigurable

processor. GARP is a processor tightly coupled to a

custom FPGA-like array and designed specially to

speed-up the execution of general case loops. The

logic array has a DMA feature and is tailored to

implement 32-bit wide arithmetic and logic operations

with control logic. All this allows to minimize the

reconfiguration overhead. GAMA is a fast mapping

and placement tool for the data-path implementation

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp88-93)

on FPGAs. It is based on a library of patterns for all

possible data-path operators.

SPARCS [4,5] is a CAD tool developed for

application development on multi-FPGA

reconfigurable computing architectures. Such

architectures need both spatial and temporal

partitioning; a genetic algorithm is used to solve the

spatial partitioning problem. The main objective used

here is the data memory bandwidth. Other works

propose a strategy to automate the design process that

considers all possible optimizations (partitioning and

task scheduling) that can be carried out from a

particular reconfigurable system [6,7]. Shirazi et al.

and Luk et al. [8,9] proposed both a model and a

methodology to take advantage of common operators

in successive partitions. We proposed a similarity-

based temporal partitioning algorithm which integrated

temporal partitioning and physical design to address

the long reconfiguration overhead time [10].

In this paper, we propose an incremental temporal

partitioning which considers the real-time domain time

constraints and the amount of logic resources used to

implement configurations. First we try to find the

minimal area that can meet the timing constraint. This

is different from searching the minimal memory

bandwidth or execution time to meet the resources

constraint.

In Section 2 of this paper, the problem formulation is

presented. Section 3 explains the temporal partitioning

algorithm proposed for partitioning of a data flow

graph considering the real time constraint. In Section 4,

details of our proposed temporal partitioning algorithm

are presented. Section 5 discusses experimental results

and finally, Section 6 concludes the paper.

2 Problem Formulation
Temporal partitioning can be stated as partitioning a

data flow graph into a number of partitions such that

each partition can fit into a target device and also,

dependencies among the graph nodes are not violated.

Currently, the temporal partitioning is often done at

boundaries of algorithm operations [11]. Temporal

partitioning algorithms usually take a data flow graph

(DFG) as input. The proposed methods are often based

on elementary arithmetic and logic operations of the

algorithm (such as adder, subtractor, multiplier etc.).

In other words, the nodes of DFG represent pre-

designed modules in a library.

Temporal partitioning leads to a register transfer

level (RTL) decomposition of the data flow graph

(DFG). The partitioning for a real-time application

could be considered as a time constrained resource

allocation problem.

To formulate the problem, firstly, the algorithm can

be modeled as an acyclic DFG where the set of

vertices corresponds to the arithmetic and logical

operators and the set of directed edges represents the

data dependencies between operations. Secondly, the

application has a critical time constraint T. The

problem to be solved is:

For a given FPGA family, one must find the set of

partitions or sub-graphs of DFG where: Υ
n

i

iP

1=

= DFG

(n is the number of partitions and Pi is the ith partition)

and the data dependencies modeled by the set of

vertices and also requires the minimal amount of

FPGA resources. Our method, which partitions a DFG

of a real time application and attempts to use minimal

area, is depicted in Fig. 1.

3 Temporal Partitioning for a Real-

Time Application
In order to reduce the search domain, we first

estimate the minimum number of partitions and the

appropriate target device size. To do this, we use a

library of modules based on the target device. The

main constraint for real-time applications is the need

for real-time processing. For a given FPGA device

with reconfiguration time of Fullµ , the following

inequality has to be satisfied:

PFull TnT +−> µ)1((1)

Where n is the number of partitions (n-1 is the

number of reconfigurations), T is the upper limit of

processing time (time constraint) and TP is the total

execution time of DFG. TP could be determined by a

full FPGA implementation of a DFG with no area

constraint (Fig. 1).

Using the above inequality, the maximum number of

partitions is obtained as follows:

+

−
= 1

Full

PTT
n

µ
 (2)

In addition we obtain the corresponding minimum

device size:

Υ
N

i

iModuleSize
n

DFGSize
DeviceSize

1

))((

=

== (3)

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp88-93)

where N is the number of modules in DFG and

Size(Module(i)) is the number of CLBs
1
for Module(i)

in the target-dependent library.

On the other hand, the minimum FPGA size should

be larger than the size of the largest module in the

library plus its required memory size. Therefore, the

initial minimum partition size can be determined as

follows:

))(())((,(kModuleMemorykModuleSize
n

DFGSize
MaxDeviceSize +=

 (4)

Where k is the index of the largest module in DFG

and Memory(Module(k))is the required number of

CLBs for transferring data between module k and its

dependent descent modules in DFG.

From the analysis of the value of n, in order to realize

the implementations, proper decision can be made,

therefore different cases could be considered:

1) 1>n : This means that it is possible to realize a

temporal partitioning. In this case, reduction of logic

area is possible.

2) 1=n : In this case, only a full FPGA

implementation without reconfiguration can meet the

constraints.

3) 1<n : This means that the reconfigurable

implementation of DFG cannot meet the time

constraint.

Fig.1. General outline of our incremental temporal

partitioning method

1- The target FPGA contains a square array of logic blocks called

configurable logic blocks (CLB’s) embedded in a uniform mesh of

routing resources.

4 Our Temporal Partitioning Algorithm
In a reconfigurable system, configurations are

swapped in/out at run-time duration. The number of

reconfigurations is an important factor to determine the

overall run-time. Reconfiguration overhead time is

usually the dominant time factor. We propose an

incremental temporal partitioning algorithm for real-

time reconfigurable applications. In this algorithm,

first we determine the maximum number of partitions.

Appropriate device size is determined with respect to

the number of partitions. Then, an iterative partitioning

process tries to perform the partitioning to obtain

desired the number of partitions after an initial

partitioning. This incremental algorithm increases the

device size for the next iteration until the requested

number of partitions is achieved. Finally, a post

processing algorithm attempts to minimize the

required device size. The general outline of our

proposed method is depicted in Fig.1.

4.1 Initial Partitioning
In the first stage of the proposed method, an initial

temporal partitioning algorithm is performed. In order

to ensure that all computations will be performed

correctly when the circuit is decomposed into stages,

certain temporal constraints must be satisfied [12]. For

example, a node can be executed if all of its

predecessors have already been executed. In [12, 13],

in the first stage, a level assignment is performed

according to the as soon as possible (ASAP) algorithm.

ASAP schedules a data flow graph in an attempt to

minimize latency by topologically sorting of the nodes

of the graph. In the partitioning stage of the DFG, the

level number of modules, their sizes and the size of the

target hardware are the most important factors which

should be considered.

4.2 Incremental Temporal Partitioning
Initial partitioning of the DFG is done based on the

required number of partitions which is the critical

constraint in a real-time system. After the initial

temporal partitioning, an incremental algorithm tries to

achieve the desired number of partitions. Initial

partitioning is done based on the initial partition size

determined in the first stage and the target device size

constraint. Therefore, it is possible that the number of

partitions obtained is more that the requested number.

In the second stage, the appropriate device size is

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp88-93)

determined based on the initial partition size and the

extra logic area to reach the target partition number.

For example, if the number of partitions achieved from

the initial current partitioning is n′ and the desired

number of partitions is n, the new device size of the

next iteration can be computed as follows:

n

iP

DeviceSizeDeviceSize

n

ni
currentnew

∑
′

+=+= 1

)(

(5)

In the next iteration, an incremental temporal

partitioning is done by swapping modules between

subsequent partitions. This algorithm attempts to

increase the area balancing of partitions which results

in less number of partitions. In the proposed

incremental temporal partitioning algorithm, candidate

nodes in each partition are first selected and then, they

are moved to the previous partition until the area

constraint is met. In addition, a post processing is done

to minimize the device size used for the

implementation. Our proposed temporal partitioning

algorithm pseudo code is depicted in Fig. 2.

Temporal partitioning can be done iteratively which

consume more compilation time. Using the

incremental method takes much less time for

generating the partitions.

5 Experimental Results
In our presented temporal partitioning algorithm the

input is taken as a DFG. A library consisting of the

required modules has been developed. Fig. 3 illustrates

the CAD flow we used for generating the modules. At

the beginning, each module was described in VHDL

and was then synthesized by Leonardo Spectrum

synthesis tool to obtain a structural description of the

module based on logic gates. The SIS synthesis

package [14] was used to perform technology-

independent logic optimization of each module circuit.

Next, each circuit was technology-mapped into 4-

LUTs and flip flops by FlowMap [15]. The output of

FlowMap is a netlist of LUTs and flip flops in .blif

format. T-VPack [16,17] then packed this netlist of 4-

LUTs and flip flops into more coarse-grained logic

blocks, and generated a netlist in .net format. We used

VPR [16] as a popular tool for placement and routing

of the configurations.

Fig. 2. Pseudo code for incremental temporal
partitioning algorithm presented for real-time

applications

The architecture of the target programmable device

was chosen to be a Xilinx Virtex (XCV100) FPGA.

VPR uses an architecture profile in which the

architecture details can be specified. Table 1 shows

some of the modules stored in the library and their

sizes in terms of the number of CLB’s used. To our

knowledge, there is not any common use or standard

benchmarks for static data flow graphs. We chose five

static data flow graphs [12] and applied our tool to

them from.

Temporal Partitioning Algorithm for Real-Time

Applications:

-Determine target number of partitions (n) according to

Equation 2;

 -Determine minimum and maximum node size

(MaxNodeSize and MinNodeSize);

-Determine total size of DFG based on Equation 3

(DFGSize);

- DeviceSize= Initial Device Size (Equation 4);

-Align DeviceSize to MinNodeSize (DeviceSize=

(DeviseSize/MinNodeSize +1)*MinNodeSize);

- Perform the Initial temporal Partitioning

- While (number of partitions obtained > n)

- Compute the new device size according to Equation 5

- Align DeviceSize to MinNodeSize;

- Perform the incremental temporal partitioning process

and attempt to preserve the area balancing of partitions.

Incremental Temporal Partitioning Algorithm:

For i = 0 to number of partitions -1

 For j= i+1 to number of partitions

CandidatesNodeNo= FindCandidates(j) // This function

returns the number of candidate nodes and a list of candidate

nodes of partition j.

For k= 0 to CandiatesNodeNo

 Add kth candidate node from candidate node list to

partition i

 Determine partition size of partition i

 if size of partition i is larger than DeviceSize

 remove the node currently added from partition i

FindCandidates (j){

For i= 0 to number of members of partition j

 if all parents of a node which is member of partition j are

partitioned

 add the node to candidates list

 increase the candidates node number

return candidates node number and candidates nodes list

}

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp88-93)

Fig. 3. Generating library cells in .net format

We implemented the proposed temporal partitioning

algorithm and fed the data flow graphs to it. In our

experiments, we assumed that the upper time limit to

application execution is 30 microsecond and the time

needed for full reconfiguration is 10 microsecond.

Table 2 shows the results of the experiments. In this

table, the total DFG size, the number of target

partitions to be achieved, the initial device size, the

initial number of partitions, the number of iterations

for incremental algorithm, different device sizes during

the incremental partitioning algorithm, final device

size, average partitions size, and deviation from

average partition size is depicted. We consider the

deviation from average partition size as a balancing

factor for the configurations generated. Smaller

deviation represents the more balanced partitions

which can result in less number of configurations.

Table 1. Some 16-bit operations and the number of

CLB’s used in Xilinx Virtex100 FPGA

Operation Type No. of CLB’s Used

ADD 11

SUB 10

XOR 4

CMP 5

MUX 4

MULT 195

ROT 4

6 Conclusion
Timing is the main constraint in real time

implementation of a reconfigurable system. Temporal

partitioning is an important stage of reconfigurable

system design which attempts to partition a DFG by

considering the timing and resource constraints and

dependencies between nodes in the DFG. In this paper,

we proposed an incremental temporal partitioning

algorithm. This method starts with estimating the

initial number of partitions and initial device size and

then runs incrementally to achieve the target number

of partitions to meet the real-time system constraint. In

addition, this algorithm tries to obtain a minimum

device size. The proposed incremental temporal

partitioning algorithm increases the device size until

the target number of partitions is obtained. This

algorithm attempts to increase the balancing of

partitions by moving the candidate nodes between

subsequent partitions. This results in less deviation

from average partition size and less number of

partitions.

Table 2. Results of reconfigurable real-time
implementations of DFGs

Data Flow

Graph

DFG1 DFG2 DFG3 DFG4 DFG5

Total DFG size 1079 943 1124 1297 984

Number of

target

partitions

3 3 3 3 3

Initial device

size

360 304 370 410 320

Initial number

of partitions

5 4 5 5 5

Number of

iterations

2 3 2 2 3

Device sizes

during

algorithm

running

360,

510

304,

380,

456

370,

510

410,

555

320,

390,

470

Final device

size

510 456 510 555 470

Average

Partition Size

359 314 374 432 328

Deviation from

average size

(Balancing

factor)

91 71 105 10 94

References
[1] X. Zhang, K.W. Ng, A review of high-level synthesis for

dynamically reconfigurable FPGA’s, Microprocessors and

Microsystems, Elsevier, vol. 24, 2000, pp.199–211.

[2] T.J. Callahan, J. Hauser, J. Wawrzynek, The GARP

architecture and C compiler, IEEE Computer, vol. 33, no. 4,

2000, pp. 62–69.

[3] T.J. Callahan, P. Chong, A. DeHon, J. Wawrzynek, Fast

module mapping and placement for data paths in FPGA’s,

Proceedings of the ACM/SIGDA Sixth International

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp88-93)

Symposium on Field Programmable Gate Arrays, Monterey,

CA, February 1998, pp. 123–132.

[4] S.V. Srinivasan, S. Govindarajan, R. Vemuri, Fine-

grained and coarse-grained behavioral partitioning with

effective utilization of memory and design space exploration

for multi-FPGA architectures, IEEE Transactions on VLSI

Systems, vol. 9, no. 1, 2001, pp. 140–158.

[5] M. Kaul, R. Vemuri, Optimal temporal partitioning and

synthesis for reconfigurable architectures, International

Symposium on Field-Programmable Custom Computing

Machines, April 1998, pp.312–313.

[6] R. Maestre, F. Kurdahi, M. Fernadez, R. Hermida, N.

Bagherzadeh, H.Singh, A framework for reconfigurable

computing: task scheduling and context manegement, IEEE

Transactions on VLSI Systems, vol. 9, no. 6, 2001, pp. 858–

873.

[7] M. Karthikeya, P. Gajjala, B. Dinesh, Temporal

partitioning and scheduling data flow graphs for

reconfigurable computer, IEEE Transactions on Computers,

vol. 48, no. 6, 1999, pp.579–590.

[8] N. Shirazi, W. Luk, P.Y.K. Cheung, Automating

production of runtime reconfiguration designs, in: K.L.

Pocek, J. Arnold (Eds.), Proceedings of IEEE Symposium on

FPGA’s Custom Computing Machines, IEEE Computer

Society Press, 1998, pp. 147–156.

[9] W. Luk, N. Shirazi, P.Y.K. Cheung, Modeling and

optimizing runtime reconfiguration systems, in: K.L. Pocek,

J. Arnold (Eds.), Proceedings of IEEE Symposium on

FPGA’s Custom Computing Machines, IEEE Computer

Society Press, 1996, pp. 167–176.

[10] F. Mehdipour, M. Saheb Zamani, M. Sedighi, An

Integrated Temporal Partitioning and Physical Design

Framework for Static Compilation of Reconfigurable

Computing System, The International Journal of

Microprocessors and Microsystems, Elsevier, 2005,

Accepted for publishing.

[11] C. Tanougast, Y. Berviller, P. Brunet, S. Weber, H.

Rabah, Temporal partitioning methodology optimizing

FPGA resources for dynamically reconfigurable embedded

real-time system, The International Journal of

Microprocessors and Microsystems, vol. 27, 2003, pp. 115-

130.

[12] C. Bobda, Synthesis of dataflow graphs for

reconfigurable systems using temporal partitioning and

temporal placement, Ph.D thesis, Faculty of Computer

Science, Electrical Engineering and Mathematics,

University of Paderborn, 2003.

[13] G.D. Micheli, Synthesis and optimization of digital

circuits, McGraw-Hill, 1994.

[14] Sentovich E M, SIS: A system for sequential circuit

analysis, Tech. Report No.UCB/ERLM92/41, University of

California, Berkeley, 1992.

[15] J. Cong, Y. Ding, Flowmap: An optimal technology

mapping algorithm for delay optimization in lookup-table

based FPGA designs, IEEE Transactions on CAD, 1994,

pp.1-12.

[16] V. Betz, J. Rose, A. Marquardt, Architecture and CAD

for deep-submicron FPGAs, Kluwer Academic Publishers,

1999.

[17] V. Betz, VPR and T-VPack1 user’s manual (Version

4.30), http://www.eecg.toronto.edu/~vaughn, 2000.

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp88-93)

