
Preventing Information Leakage in C Applications Using
RBAC-Based Model

SHIH-CHIEN CHOU

Department of Computer Science and Information Engineering
National Dong Hwa University

1, Section 2, Da-Hsueh Road, Shoufong, Hualien 974
TAIWAN

Abstract - When an application is being executed, users can read the application’s output. If sensitive
information is managed by an application, information should be prevented from being leaked to
unauthorized users during application execution. The prevention can be achieved through information
flow control. Since the procedural C language is still in use heavily, we developed a model based on
role-based access control (RBAC) for C applications. This paper describes the model.

Key-words: Information security, information flow control, role-based access control (RBAC)

1. Introduction
When an application is being executed, users
play roles. A user playing a role can access the
application’s output. If an application manages
sensitive information, preventing information
leakage during application execution is
important. Information leakage refers to leaking
high security level information to low security
level users. To prevent information leakage,
information flow control models can be used [1].
Since the C language is still in use heavily, we
developed an information flow control model
CRBAC for C based on role-based access
control (RBAC) [2]. CRBAC controls both read
and write access and offers the following
additional features:
a. Preventing indirect information leakage. This

leakage refers to leaking information through
the third one(s). Generally, this leakage can be
prevented using join operating [3].

b. Managing user relationships. User
relationships may affect permissions when
users play roles in an application. For example,
suppose friends can read one another’s general
information such as age. Also suppose that
Mary and John are friends. Then, Mary and
John can read each other’s general
information. When they break friendship, they
can no longer read one another’s general
information. Since user relationships may
change during runtime, user permissions
should be changed according to user
relationship change.

c. Correcting permissions invalidated by user
relationship change. User relationship change
may affect the prevention of indirect
information leakage. For example, suppose

Tom and Mary are initially not friends. Then,
Tom cannot read Mary’s general information.
Suppose at this time, the information “ageSet”
is derived from Mary’s age and others’ ages
that can be read by Tom. Then, according to
the join operation, Tom is not allowed to read
“ageSet”. If Tom and Mary become friends
after a certain time (user relationship change
occurs in this case), Tom can read Mary’s age
this time. In this case, should Tom be allowed
to read the information ‘ageSet’ produced
before? The answer should be yes because: (1)
Tom can read Mary’s age after the user
relationship change and (2) “ageSet” is
derived from Mary’s age and others’ ages that
can be read by Tom. Since Tom can read all
the ages that derived “ageSet” after the user
relationship change, Tom should be allowed to
read “ageSet” after the change. Allowing Tom
to read “ageSet” invalidates the previous join
operation because the previous join operations
disallowed Tom to read “ageSet”. The
invalidation requires previous join operations
to be corrected.

d. Avoiding improper function call. Different
functions in a C application may be in
different security levels and therefore should
be protected independently.
This paper presents CRBAC and its

evaluation.

2. Related Work
RBAC is useful in access control. Nevertheless,
since the original design of RBAC is not for
information flow control, most features
mentioned in section 1 are not offered by the
general cases of RBAC. The model in [4] uses

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp169-173)

 1

RBAC to control information flows within
object-oriented systems. It classifies object
methods and derives a flow graph from method
invocations. From the graph, non-secure
information flows can be identified.

The model in [5] uses access control lists
(ACLs) of objects to compute ACLs of
executions (which are composed of one or more
methods). A message filter is used to filter out
possibly non-secure information flows.
Flexibility is added by allowing exceptions
during or after method execution [6]. More
flexibility is added using versions [7].

The decentralized label approach [3] marks
the security levels of variables using labels. A
label is composed of one or more policies,
which should be simultaneously obeyed. A
policy in a label is composed of an owner and
zero or more readers that are allowed to read the
data. Join operation is used to prevent indirect
information leakage. Write access is controlled.

CACL [8] is our previous work. It cannot
manage user relationships and adjust
permissions invalidated by user relationship
change.

3. CRBAC
The major problem we encountered in
developing CRBAC is “What should be
regarded as roles in a C program?” A C
function is a candidate for a role. Nevertheless,
a C function may allow more than one type of
users to access and the users may be in different
security levels. If a function is regarded as a role,
users in different security levels can access
information managed by the function, which
may result in information leakage. For example,
suppose the function getInfo gets a user’s
information. Then, the following two cases of
information leakage may happen (suppose a
patient is allowed to retrieve his own
information only). First, a patient can use the
function to retrieve a doctor’s information.
Second, a patient can use the function to retrieve
another patient’s information. Although
information may be leaked when regarding
functions as roles, CRBAC still regards
functions as roles. Nevertheless, the following
requirements should be fulfilled for a C
program:
RleReq 1. Every function in a C program is

allowed to access by only one type of users.
This solves the problem resulted by the first
case mentioned above.

RleReq 2. Constraints should be established for
users to access information within a function.
For example, accounts and passwords should

be given to patients that will access
information through the function getInfo. This
solves the problem resulted by the second case
mentioned above.

3.1 Definition
A C application Cap embedded with CRBAC is
defined below:
Definition 1. Cap = (USR, RLE, UR, PER, DSR,

CSG, URA, RPA, VFC, JH), in which
a. USR is the set of users that operate Cap.
b. RLE is a set of roles. A role rle corresponds

to a function in Cap.
c. UR is a set of user relationships. A user

relationship ur∈(2USR - φ).
d. PER is a set of permissions. A permission

is an access right. CRBAC attaches access
rights to variables because variables carry
information managed by an application. We
implemented a permission as an access
control list (ACL). An ACL is composed of
a read access control list (RACL) and a
write access control list (WACL). The ACL
ACLvar associated with the variable var is
defined as “ACLvar = (RACLvar, WACLvar,
URvar)”, in which:
(1) RACLvar ∈ USRxRLE2 , in which “x”

represents Cartesian product. Since
multiple users may play the same role,
RACL has this definition to distinguish
users. A user playing a role in RACLvar is
allowed to read var.

(2) WACLvar∈ USRxRLE2 . A user playing a
role in WACLvar is allowed to write var.

(3) URvar∈(φ−UR2). RACLvar and WACLvar
are valid in a user relationship ur if
ur∈URvar.

e. DSR is a set of data sources (DSOURCE).
The DSOURCE of a variable records the
functions that wrote the variable’s data.

f. CSG is a set of CRBAC segments. A C
application may have blocks and the same
variable names can be used in different
blocks. CRBAC offer CSG to differentiate
variables with the same names.

g. URA is a set of user-role assignments,
which is defined as “ RLEUSR 2→ ”.

h. RPA is a set of role-permission assignments,
which is defined as “ PERRLE 2→ ”.

i. VFC is a set of valid function calls. If the
function fn1 is allowed to invoke fn2, the
element (fn1, fn2) belongs to VFC.

j. JH records join histories. It facilitates

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp169-173)

 2

redoing join operations to correct
permissions (see section 3.3 for details).

3.2 Information flow security in CRBAC
An information flow occurs when the result of a
computation is assigned to a variable. To ensure
secure information flows, both direct and
indirect information flows should be secure.
Direct information flows include those among
functions and those within functions. Those
among functions are induced by function calls.
If the function fn1 invokes fn2, a vfc “(fn1, fn2)”
should exist. Suppose the invocation is allowed.
Then, the ACLs and DSOURCEs of arguments
should be copied to the corresponding
parameters. This copying is necessary because a
parameter receiving an argument inherits the
security level of the argument.

When the value derived from variables in the
set “{vari | vari is a variable and i is between 1
and n}” is assigned to the variable d_var, the
information flow induced by the derivation is
considered secure only when both the following
two secure flow conditions are true. To define
the conditions, we let:
(a) The ACL and DSOURCE of d_var be

respectively “(RACLd_var, WACLd_var, URd_var)”
and “DSOURCEd_var”.

(b) The ACL and DSOURCE of vari be

respectively “(
i

RACLvar ,
i

WACLvar ,

i
URvar)” and “

i
DSOURCEvar ”.

First secure flow condition:

∃ URsub ⊆ (
i

URn
i var1∩= ∩ URd_var) so that

RACLd_var⊆ i
RACLn

i var1∩=

Second secure flow condition:

∃ URsub ⊆ (
i

URn
i var1∩= ∩ URd_var) so that

WACLd_var⊇ i
DSOURCEn

i var1∪=

The first condition controls read access. The
condition “RACLd_var ⊆

i
RACLn

i var1∩=
”

requires that d_var should be the same restricted
as or more restricted than the variables in the set
“{vari | vari is a variable and i is between 1 and
n}”. Since RACLs and WACLs are valid under
certain user relationships, the ACL of d_var and
those of the variables in the variable set

mentioned above should be valid in certain user
relationship(s). This results in the requirement
“ ∃ URsub ⊆ (

i
URn

i var1∩= ∩ URd_var)”. The
second secure flow condition controls write
access. It requires that the data sources of the
variables deriving the value assigned to d_var
should be within WACLd_var because the data
derived from the variables are written to d_var.

After assigning the derived value to d_var, the

ACL of d_var should be changed by the join
operation to prevent indirect information
leakage. We use the symbol “⊕ ” to represent
the operation and change ACLd_var to

i
ACLn

i var1⊕=
.

Definition 2.
i

ACLn

i var1⊕=
= (

i
RACLn

i var1∩=
,

i
WACLn

i var1∪=
,

i
URn

i var1∩=
)

In addition to joining ACLs, the DSOURCE
of d_var will be adjusted to

i
DSOURCEn

i var1∪=
.

3.3 Redoing join operations
ACLs invalidated by user relationship change
should be corrected by redoing join operations.
Suppose a variable d_var is derived from the
variables in the set VAR1. Since a variable may
be derived from other variables, we suppose that
the variables deriving the variables in VAR1
constitute the set VAR2, the variables deriving
the variable in VAR2 constitute the set VAR3, and
so on. The derivation process results in ripple
effects. The effects end when VARm ⊆ VARk,
in which k < m. We let UVAR be the set
“ i

n
i VAR1=∪ ∪ d_var” and suppose that the

earliest time the variable vari being a derived
variable is

i
tvar , in which vari ∈ UVAR. From

i
tvar down to the current time, every join
operation in which vari is a derived variable
should be redone. When redoing join operations,
the current user relationships should be used as
a reference because ACLs should be correct
under the current user relationships. The redoing
should use the component JH.
Definition 3. An element jh of JH in Definition

1 is defined below:
jh = (t, d_var, {(var, ACLvar) | var is a variable

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp169-173)

 3

that derives d_var and ACLvar is the ACL of
var at the time t}, tag), in which

a. t is the time that a join operation is done.
b. d_var is the derived variable.
c. {(var, ACLvar)} is the set of variable and

their ACLs that derive d_var.
d. If tag is set, t is the earliest time that d_var

is a derived variable.
With the above description, the redoing of join
operations is achieved using Algorithm 1.

Algorithm 1. Join operation redoing algorithm
1. Input data:
1.1. VAR1 = {var | var is a variable to derive

d_var}
1.2. d_var: the variable derived from the

variable in the set VAR1
2. Algorithm:
2.1. Backtrack JH to identify VAR2 through

VARn following the procedure described
in the first paragraph of this section.

2.2. Let UVAR be the set
“ i

n
i VAR1=∪ ∪ d_var”.

2.3. For each vari ∈ UVAR, do
2.3.1. Backtrack JH to identify the earliest

time
i

tvar that vari is a derived variable.
The tags in JH (see Definition 3)
facilitate the identification.

2.3.2. From the time
i

tvar down to the current
time, mark the join operations in JH in
which vari is a derived variable.

2.4. End do
2.5. Redo the marked join operations from the

earliest time a join operation is marked
down to the current time.

4. Features
Controlling both read and write access is
achieved by the secure flow conditions. Below
we prove that CRBAC offers other features.
Lemma 1: CRBAC prevents indirect

information leakage.
Proof: Indirect information leakage results

when a role fn2 leaks to fn3 the information
retrieved from fn1, in which fn2 is allowed to
read the information of fn1 whereas fn3 not.
To prove that indirect information leakage is
avoided, we let var1 be a variable in fn1 that
can be read by the roles in var1’s RACL
RACLvar1. According to the above assumption,
fn2 is in RACLvar1 but fn3 not. We also let var2
be a variable in fn2 whose value is derived
from var1. After the derivation, var2’s RACL
RACLvar2 is modified by the join operation
(see Definition 2). Suppose indirect

information leakage exists among fn1, fn2,
and fn3. Without loss of generality, we assume
that fn3 can read var2 after var2 is derived
from var1. With this assumption, fn3 is within
RACLvar2. However, according to the join
operation, RACLvar2 is the intersection of
RACLvar1 and other RACLs after var2 is
derived from var1. Since fn3 is not in
RACLvar1, fn3 is not in RACLvar2. #

Lemma 2. CRBAC manages user relationships.
Proof: To prove that CRBAC manages user

relationships, we have to prove that: (a)
CRBAC changes role permissions when user
relationship changes and (b) CRBAC corrects
permissions invalidated by user relationship
change. The proof for item b is in Lemma 3.
Below we prove that CRBAC changes role
permissions when user relationship changes.

The following cases can be regarded as user
relationship change: (a) a system possesses
different user relationships at different time,
say t1 and t2 and (b) a system possesses the
same user relationships at t1 and t2 but at least
one user relationship at different time
possesses different roles.
Case a: Let URt2 = URt1 ∪ {ur}, in which

ur is a user relationship and ur ∉ URt1. In
this case, PERt1 ≠ PERt2, in which PERt1
and PERt2 are respectively the permission
sets of the executing system at t1 and t2.
PERt1 ≠ PERt2 because PERur ⊆ PERt2
but PERur ⊄ PERt1, in which PERur
consists of permissions of users in the user
relationship ur.

Case b: Assume that: (1) urt1 and urt2 are the
same user relationship containing different
users at time t1 and t2 and (2) urt2 = urt1 ∪
{u1}, in which u1 is a user and u1 ∉ urt1.
In this case, PERt1 ≠ PERt2 because u1 is
in the user relationship at time t2 but not at
t1, which makes PERt2 to possess more
permissions than PERt1. The extra
permissions of PERt2 are offered by u1. #

Lemma 3. CRBAC corrects permissions
invalidated by user relationship change (i.e.,
Algorithm 1 is correct).

Proof. Suppose only one variable d_var is
within UVAR in line 2.2 of Algorithm 1. Then,
d_var never plays the role of a derived
variable. In this case, d_var’s ACL is
unchanged during application execution. An
unchanged ACL is correct because an ACL
may be invalidated only when user
relationships change and the ACL is changed
by join operation.

Suppose Algorithm 1 is correct when there
are (k-1) elements in the set UVAR, in which

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp169-173)

 4

UVAR = {vari | vari is a variable, i is between
1 and (k-1), and (k-1) > 1}. The correctness of
Algorithm 1 under the above assumption
implies that, before the variable d_var is
derived using the variables in UVAR,
Algorithm 1 corrects ACLs associated with
the variables in UVAR by referring to the
current user relationships. Let’s add a variable
vark to the original UVAR (we let NewUVAR =
UVAR ∪ {vark}). According to the
assumption in the previous paragraph, the
ACLs associated with the variables in
NewUVAR excluding vark are correct after join
redoing. Moreover, the ACL associated with
vark is correct because lines 2.3 through 2.5 of
Algorithm 1 corrects the ACL of vark. #

Lemma 4. CRBAC avoids improper function
calls.

Proof. An improper function call from the
function fn1 to fn2 may occur when: (a) fn1 is
not allowed to invoke fn2 and (b) fn1 passes
improper arguments to fn2. If condition a is
true, the VFC defined in Definition 1 will
block the function call. If condition b is true,
the two secure flow conditions will block the
statement. #

5. Evaluation
A C application embedded with CRBAC model
should first be processed by the CRBAC
preprocessor. The output of the preprocessor is a
pure C program. The C program generated by
the CRBAC preprocessor is composed of the
original program and a security monitor to
check information flow security during runtime.

We trained students to use CRBAC. We then
required them to program a simplified library
management system and a simplified inventory
management system of a supermarket. During
the programming, we required the students to
inject user relationship changes and non-secure
statements (non-secure statements are those that
cause non-secure information flows). We then
required the students to run their programs. The
experiments showed that every injected
non-secure statement was identified.

6. Conclusion
Information flow control within an application
during its execution prevents information
leakage. Since the C language is still in use
heavily, we developed an RBAC-based model
CRBAC to control information flows within C
applications. It offers the following features:

a. Controlling both read and write accesses
using the two secure flow conditions.

b. Preventing indirect information leakage using
join operation.

c. Managing user relationships. CRBAC uses
user relationships to limit permissions so that
changing user relationships will change user
permissions.

d. Correcting permissions invalidated by user
relationship change. CRBAC records join
histories and redoes join operations to correct
permissions using Algorithm 1.

e. Avoiding improper function calls by recording
valid calls.

References
[1] A. Sabelfeld, and A. C. Myers,

“Language-Based Information-Flow Security”,
IEEE Journal on Selected Areas in
Communications, vol. 21, no. 1, pp. 5-19,
2003

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein,
andC. E. Youman, “Role-Based Access
Control Models”, IEEE Computer, vol. 29, no.
2, pp. 38-47, 1996.

[3] A. Myers and B. Liskov, “Protecting Privacy
using the Decentralized Label Model”, ACM
Trans. Software Eng. Methodology, vol. 9, no.
4, pp. 410-442, 2000.

[4] K. Izaki, K. Tanaka, and M. Takizawa,
“infrmation Flow Control in Role-Based
Model for Distributed Objects”, Proc. 8’th
International Conf. Parallel and Distributed
Systems, pp. 363-370, 2001.

[5] P. Samarati, E. Bertino, A. Ciampichetti, and
S. Jajodia, “infrmation Flow Control in
Object-Oriented Systems”, IEEE Trans.
Knowledge Data Eng., vol. 9, no. 4,
pp.524-538, Jul./Aug. 1997.

[6] E. Bertino, Sabrina de Capitani di Vimercati,
E. Ferrari, and P. Samarati, “Exception-based
Information Flow Control in Object-Oriented
Systems”, ACM Trans. Information System
Security, vol. 1, no. 1, pp. 26-65, 1998.

[7] A. Maamir and A. Fellah, “Adding
Flexibility in Information Flow Control for
Object-Oriented Systems Using Versions”,
International Journal of Software Engineering
and Knowledge Engineering, vol. 13, no. 3, pp.
313-326, 2003.

[8] Shih-Chien Chou and Chin-Yi Chang, “An
Information Flow Control Model for C
Applications Based on Access Control Lists”,
Journal of Systems and Software, vol. 78, no.
1, pp. 84-100, Oct. 2005.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp169-173)

