
Cognitive Information Complexity Measure of Object-Oriented Software
– A Practitioner’s Approach

DHARMENDER SINGH KUSHWAHA and A.K.MISRA

Department of Computer Science and Engineering
Moti Lal Nehru National Institute Of Technology

Allahabad,
INDIA.

Abstract: - Cognitive informatics is an interdisciplinary research area that paves way for finding solutions to
problems in the related field such as problem understanding, artificial intelligence, cognitive sciences etc. It studies
the information processing mechanism and its relation to the behavior thereupon, may it be system or an individual.
Cognition defines the ease of understanding or the property of comprehension. Comprehension is the key feature
that distinguishes any entity as being complex or simple. Comprehensibility of a problem helps in efficient design
solution and improvement of software product quality. Thus property of comprehensibility can be used in all the
different phases of software engineering. Hence, from a practitioner’s point of view, we need a object-oriented
metric based on cognition that will act as a yardstick in designing efficient software systems.

Keywords: - Cognitive informatics, Problem analysis and design metrics, Functional overlap of classes, Cognitive
complexity of inheritance, Cognitive information complexity measure of classes.

1 Introduction
Metrics are a useful means for monitoring progress,
attaining more accurate estimation of milestones and
developing a software system that contains minimal
faults thus improving the quality. Measures are
necessary to identify weaknesses of the development
process [1]. They also prompt the necessary corrective
activities and enable us to monitor the results. Hence
they act as feedback mechanism that plays a vital role
in the improvement of the software development
process. There is an urgent need of software metrics to
monitor the software development process for
improving the overall quality of the software [2].
Since complexity metrics are a significant and
determinant factor of a systems success or failure,
there is always a higher risk involved when the
complexity measurement is ignored. Software metrics
have been used for over three decades to assess or
predict properties of software systems, but success has
been limited by factors such as lack of sound models,
the difficulty of conducting controlled repeatable
experiments in educational or commercial context,
and the inability to compare data obtained by different
researchers.

Object technology is not a magic solution by itself [1].
There is a need to establish some basic standards and
guidelines that practitioner should follow. In
designing modular and complex software systems,
object oriented analysis and design (OOAD)
techniques provide many benefits. Despite all its
benefits, the OOAD software development lifecycle is
by means less difficult than the typical procedural
approach. Therefore it is necessary to derive
dependable guidelines.
Most of the object-oriented metrics have been defined
using only the syntactic aspects of the object-oriented
software, producing a single numerical measure,
which hardly provides any useful information about
the ways of improving the good design and related
quality factors [7]. The focus on process improvement
has increased the demand for software measures [9].
Given the central role that the software development
plays in the delivery and application technology,
practitioners are increasingly focusing on process
improvement in the software development area.

2 Why Cognitive Complexity
Approach?

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp174-179)

Wang [11] describes a model showing relationship
between NI-OS and NI-APP as one of the foundations
of cognitive informatics. Wang [2] defines NI-Sys as a
real time natural intelligence [NI] processing system
NI-Sys, which is configured by a predetermined
operating system NI-OS and a set of acquired life
application Ni-App. This model defines cognitive
functions each inheriting some properties of the
function above it in the hierarchy and interacts with
NI-App and NI-Os.

Fig. 1: Relationship Between NI-OS and NI-App.

This model can be interpreted as under:

1. Entities at level 0 communicate and acquire
certain features from the entities at level 1 and
so on. This corresponds to the abstraction
mechanism.

2. It establishes that the various entities
communicate via message passing.

3. It shows that these entities (class or object)
also access or call global variables, attributes
and friend functions.

4. NI-Sys can be mapped into individuals
understanding (brain) that includes cognition
and semantics relevant to that application.
This would prompt the practitioner to
construct sensible class definitions.

5. NI-App can be mapped to reusable class
library.

We have made an attempt to demonstrate that the
object-oriented paradigm is closely related to above
model proposed by Wang. Cognitive informatics is
still exploring the solutions to a vital question “How
does the human natural intelligence process
information?” The natural intelligence is derived

among many things by self-learning. The self-learning
is based on the interaction with the real world. In real
world, things around us are objects and the essence of
the object-oriented design is based on decomposing
the problem / system into objects. Hence there is a
close linkage between the cognitive informatics and
the object-oriented paradigm and we have made an
attempt to establish the linkage as illustrated in fig.2.
Hence the abstraction from the above model of
cognitive informatics is closely related to the object-
orientation concepts and hence, it can be used to draw
some useful metrics that will help the object-oriented
software developer at various stages of software
development.
To establish the linkage and derive the complexity of
any object-oriented software, our work is based on the
following proposed development model as illustrated
in table 1.

Cognitive complexity of the Software
Product

Cognitive Complexity of Main Function
Cognitive complexity in Inheritance

Cognitive complexity of Class
Problem Analysis and design metric

Table 1: Proposed Development Model for Cognitive
Complexity Measure

Fig. 2: Cognitive model of Object-oriented Software
Development

The term object is sometimes used in this paper to
emphasize the close relation and mapping of the real

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp174-179)

world objects to the object-oriented paradigm. But the
terms objects and classes are considered equivalent
here and will be used interchangeably throughout this
paper.

3 Problem Analysis and Design Metric
(PADM)
There are two important techniques to ensure software
reliability and quality [2]. One that has been
researched for long is by the use of metrics/measures
for complexity, but still important and relatively
unexplored is to utilize the software metrics to
monitor and improve the quality of analysis and
design phase of the software development by
appropriate metrics.
Our proposed metric for problem analysis and design
is based on the following factors that influence
OOAD.

1. Number of methods per class (MPC).
2. Reference to other object (RTOO).
 Number of methods that need to access the

method or instance variable of another object
should be discouraged.

3. Number of independent functions performed by
methods in class (IFP) should be encouraged.

4. Number of lines of code per method (LOCPM)
should be restricted to ten as suggested in various
literature before.

5. Probability of use of instance variable (PUIV)
should be more.

6. Amount of functional overlap of classes (FOC)
should be reduced to maximum possible extent.

The basis of the above factors is as under.
MPC
1. As the number of methods in a class increase,

there shall be a tendency by the practitioner to
loose his understanding of the class. For
efficient cognition of methods in a class, we
propose, based on the comprehensibility and
researches, that it should not be more than ten
[10].

2. Too many methods per class tend to reduce the
probability of class reuse, which is a major factor
in O-O development.

3. According to Chidamber [10], most classes tend
to have small number of methods (0 to 10).

4. This will also aid in software maintenance and
future re-engineering needs.

5. This will reduce the complexity of class as
mentioned in section 5.

PUIV
Let a class contain ‘i’ number of methods. Let there be
‘j’ number of instance variables per class. Let Mi be
the method using Nj number of instance variables.
Then probability of method Mi using Nj number of
instance variables = Nj/j.

Probability of use of instance variable for all the
methods = i
 ∑ (Nj/j)k.
 k=1
If PUIV > 1, it is a cohesive class and we should
design such that high cohesion is achieved. This also
indicates how closely the local methods are related to
the local instance variables.

FOC
The amount of functional overlap of one class with
other class is a important design issue for the
practitioners. If there is high overlap, it indicates that
the design of functionality breakdown structure is
poor. Let a class A perform functions f1, f2, f3. Let a
class B perform functions f2, f4, f6. The functional
overlap is given by A∩B = f2. A good design should
aim to eliminate these functional overlaps.

Having examined the factors that determine and affect
our design decisions, we now introduce the factors
and their impact on design decisions using their
impact weight when the above factors assume true or
false value.

S.No Factor True False
1 MPC ≤ 10 0 1
2 RTOO ≤ 0 0 1
3 LOCPM ≤ 10 0 1
4 PUIV > 1 0 1
5 FOC ≤ 0 0 1

Measuring the weights of the factors as listed in the
table gives us a fair indication of our OOAD process.
Therefore if MPC+RTOO+LOCPM+PUIV+FOC =0,
our design strategy is simple and efficient.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp174-179)

4 Cognitive Complexity of Inheritance
(CCI)
Inheritance is the most important feature for software
reuse and it supports the class hierarchy design and
captures the is-a relationship between a class and its
sub-class [2]. Results show that multiple inheritances
are rarely used [1]. The average level of inheritance
one to two of the newly developed classes indicate
that object-oriented developers involved in the
development activities utilize reusable class library.
The inheritance hierarchy is a directed acyclic graph
that can be described as a tree structure with classes as
nodes, leaves and root [9]. The design decision is
based on the ratio between depth and breadth of the
inheritance tree. By measuring the depth of the
inheritance tree, one will be able to ascertain the level
of class abstraction. This will help the practitioner in
deciding upon the proper level of specialization and
dependence amongst the similar classes in a system.
The idea is that if a class has a large number of
immediate children, there shall be increase in the
message transfer among them. This will have a larger
influence on system design and will make testing
more complex [5]. It is also to be noted that if a class
has a large number of children, it also indicates
improper abstraction, but a greater amount of reuse in
system. There are also instances when a class cannot
respond to a message (i.e. it lacks a corresponding
method of its own), then it will pass the message on to
its parents and this fact should be captured by metrics
concerned with the object-oriented development.

Wang [11] proposed one of the properties in
informatics laws of software based on information
entropy. The entropy theory has been applied to
measure the complexity of the software. Entropy has
been used as a measure of uncertainty. According to
Shanon’s definition, the higher the uncertainty
associated with the signal, the greater is the amount of
information conveyed by the signal. The entropy
increases with the increase in the messages [5]. Value
of complexity measure for the program consisting of
two objects is higher than that of the complexity
measure for the program consisting of one object.

Let ‘x’ be the number of messages sent or received by
an object Ox. Let ‘n’ be the number of total messages
exchanged within the inheritance tree. The reference
probability of object Ox = x/n. Entropy H = -[x/n*log
(x/n)].

Therefore cognitive complexity of inheritance (CCI)
for all the objects/classes in the inheritance tree is:
 k
CCI = [∑-{(x/n)log(x/n)}o]
 o=1
Where o = number of objects O1,O2………. Ox
 x = number of messages related to object Ox
 n = total number of messages.

Hence we can assert that the inter-object complexity
measure depends on the number of objects and the
number of messages exchanged between the objects.
Therefore entropy measure can be used by the
practitioners to resolve the conflict between the
improper abstraction and reuse, by designing such
inheritance hierarchies so as to limit the entropy and
hence the complexity. This will reduce the testing
efforts required and increase the probability of class
reusability.

Entropy Reduction
Entropy can be reduced by one of the following two

methods:
1. Reducing the number of messages and
2. Reducing the length of messages i.e. the number of
characters / bits in the messages.

5 Cognitive Information Complexity
Measure of Classes (CICMC)
Since the code inside a method is not distinguished as
being procedural or object-oriented, we calculate the
complexity of a class by calculating the cognitive
complexity of each method in a class by cognitive
information complexity measure (CICM) [3]. This
measure is computationally simple and a robust one
[4], since it adheres to all the nine Weyuker
properties.

The CICM defines complexity as WICS * SBCS.
WICS is defined as
 LOCS
 WICS = Σ WICLk
 k = 1
SBCS is defined as
 n
 SBCS = Σ (Wi)
 i = 1

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp174-179)

Where W1, W2 ….. Wn be the cognitive weights of the
basic control structures [3].
WICL is defined as ICSk / [LOCS – k],

Where LOCS
 ICS = Σ Ik
 k=1
Where Ik = Information contained in kth line of code,
 LOCS = Total lines of code in the software.

Since a class consists of number of methods, the
complexity of a class is calculated by calculating the
complexity of each method contained in a class.

Let M1,M2,M 3……………….. Mn be the methods in a class.
Let CICM1, CICM2…………CICMn be the CICM of
each method.
 n
Then CICM of the class is defined as ∑ (CICM)i
 i=1
The definitions of our metrics are based on the
concept of object-orientations and hence are
independent of the object-oriented programming
language used. Thus CICMC will guide the developer
in designing classes such that the class complexity is
reduced and hence improving its reusability and
maintainability.

6 Cognitive Information Complexity of
Main Function (CICMF)
Since the main function of any object-oriented
software resembles a typical procedural program
containing program body which is composed of
various basic control structures, its complexity is
calculated using the cognitive information complexity
measure (CICM) as described in section 5.

7 Total Complexity of Object –
Oriented Software Product
Since object-oriented software are composed of all the
aspects that have been derived above, the product
complexity is calculated as PUIV + CCI + CICMC +
CICMF.

8 Conclusion
Optimization of object-oriented software and
improvement of its quality cannot be done after the
development process. In order to produce high quality
software, there is a need of metrics being used at all

the stages of software development process. Our
measure though computationally simple, will help the
practitioner at all the stages of software development
process right from analysis to the optimization of the
finished product. This will reduce the rework and
backtracking saving effort and time.

References:
[1] B.Stiglic, M.Hericko, and I. Rozman “How to

Evaluate Object-Oriented Software
Development”, ACM SIGPLAN Notices, Vol. 30,
No. 5, May 1999.

[2] C.Chung, and M.Lee “Inheritance based Object-
Oriented Software Metrics”, IEEE Region 10
Conference, Nov 1992, Melbourne, Australia.

[3] Kushwaha D.S.and.Misra A.K “A Modified
Cognitive Information Complexity Measure of
Software”, ACM SIGSOFT Software Engineering
Notes, Vol. 31, No. 1, January 2006,

[4] Kushwaha D.S.and.Misra A.K “Evaluating
Cognitive Information Complexity Measure ”,
13th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based
Systems (ECBS) To Appear, 2006.

[5] K.Kim, Y.Shin and C.Wu “Complexity Measures
for Object-Oriented Programs Based on the
Entropy”, Proceedings of the Second Asia Pacific
Software Engineering Conference, IEEE
Computer Society , 1995.

[6] K.S.Mathias, J.H.Cross II, T.D.Hendrix and
L.A.Barowski “The Role of Software Measures
and Metrics in Studies of Program
Comprehension”, ACM Southeast Regional
Conference, 1999.

[7] L.Etzkorn and H.Delugach “Towards a Semantic
Metric Suite for Object-Oriented Design”,
Proceedings of the Technology of Object-Oriented
Languages and Systems (TOOLS 34'00) IEEE
Computer Society,2000.

[8] S.Purao and V.Vaishnavi “Product Metrics for
Object-Oriented Systems”, ACM Computing
Surveys, Vol. 35, No. 2, June 2003, pp 191-221.

[9] S.R.Chidamber and C.F.Kemerer “Towards a
Semantic Metric Suite for Object Oriented
Design”, IEEE Transactions on Software
Engineering, Vol. 20, No. 6, June 1994.

[10] S.Xu, V.Rajlich and A.marcus “An Empirical
Study of Programmer Learning during
Incremental Software Development”.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp174-179)

[11] Y.Wang “On Cognitive Informatics”, IEEE
International Conference on Cognitive
Informatics (ICCI’02)”, 2002.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp174-179)

