Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp211-216)

A Queueing Model for Evaluating the Performance of Parallel
Processing Systems

CHANINTORN

JITTAWIRIYANUKOON

Department of Telecommunications Science

Faculty of Science and Technology

Assumption University

Abstract:-This paper presents a queueing model to measure the performance of parallel processing network by
introducing the 80 parallel computers for all subtasks execution. First, the case in which a task with granularity is
discussed. The parallel system improves the performance by distributing and executing subtasks on dedicated 80
parallel computers. Delays in task partitioning, subtask distribution, communications and merging are taken into
account for this performance evaluation. However, the prototype of this parallel environment is indeed costly. In this
paper a cost-effective queueing model is proposed in order to investigate how parallel systems can function, as tasks
with granularity exist. Results from cost-effective model are firstly crosschecked to results collected from 80 parallel
computing units. By altering task characteristics for the mentioned parallel computing system, we can obtain the

supportive results from the cost-effective queueing model.

Keywords:-Parallel processing, granularity, parallelism, queueing model, performance evaluation.

1.Introduction

Computer networking evolved from telecommunications
terminal-computer communication, where the object was
to connect remote terminals to a central computing
facility. Since computer networks were invented, the
number of applications that can be implemented on the
computer networks have been changing steadily from
sending a simple electronic mail, to complicated areas
such as parallel and distributed computing [2]. The
computer networks are becoming an integral part of
every society. Ongoing researches will continue to
improve the data transfer rate to make it even faster and
more reliable. The application and software designers
cannot emphasize only on the data exchange, they must
find a better way to increase the current computing
power. Research on parallel and distributed system on
computer network may provide the answer.

For the last decade, the computers evolution has been
changed drastically both software and hardware. On the
hardware side, the development is concentrated on
“Multi-processor”, a scheme which more than one CPUs
are loosely working together to perform an assigned
task. This kind of development is expected to continue in
a foreseeable future. Although it is still expensive to
implement, we still can use this multiprocessor scheme

to improve the efficiency of a computer system. Another
alternative is to wuse parallel processing (parallel
processing is a process that utilizes a number of
processors to compute subtasks simultaneously) to
shorten the overall processing time and to improve the
efficiency. This paper will emphasize on parallel
processing network to improve the processing speed and
task distribution by utilizing a client/server architecture.
The main goal of parallel computation is to increase
the processing speed. This can be obtained by having
multiprocessors to perform each subtasks as a parallel
processing units. There are two parallel architectures that
are currently used. These are single instruction multiple
data stream (SIMD) and multiple instruction multiple
data stream (MIMD). However, to design a low cost
parallel system is to employ the facilities of computer
network. Another method in the past was Parallel Virtual
Machine (PVM) project which implemented a
concurrent system onto multiplatform workstations [3].
In order to develop a client/server architecture,
initially, all clients are to be autonomous systems in the
network. A protocol can control all clients to work
closely together in parallel fashion. Parallel system built
by the client/server network has no problem of
communication delay as the bandwidth of current
computer network is as high as 1 Gbps. But major
problems may arise whenever the partitioning into
subtasks is performed. Subtasks then are distributed to

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp211-216)

clients. Each client has processing capability per se plus
a separate memory unit to process to task. The subtask
programs on clients can be identical or different in size.
Once subtask processing is completed then result will be
forwarded to the server. All subtasks will wait at the
server until the last result from client has been
completed. All results will then be merged to mark the
completion of parallel processing.

2.Client/Server Architecture

A.TCP/IP

TCP/IP (Transmission Control Protocol/Internet
Protocol) is one of the most popular protocols firstly
developed by a community of researchers center at the
ARPAnet. TCP/IP is a connectionless protocol.
Information will be packetized prior to the transmission.
Each of these packets is transmitted through the network
individually. TCP 1is responsible for ensuring the
commands can get through to the other end. It keeps
track of what is sent, and retransmits if necessary.
Generally, TCP/IP function comprises of 4 layers:

e an application layer, a protocol deals with
applications such as mail, ftp etc.

e TCP layer, a protocol provides services needed
by many applications.

e [P layer, a protocol needed to manage a specific
physical medium, such as Ethernet or a point to
point line. This layer also provides the basic
service of transferring packets to the destination.

e Physical layer, the layer specifies the
characteristic of physical medium.

B. Distributed Model

The model this research employs is distributed system
model [1] according to client/server architecture. The
internodes communication is done by using RPC
(Remote Procedure Call) as message passing system. In
the model, job scheduling is an independent queue as
each job has no relation to each other in order to perform
a parallel computation after partitioning process. The
parallel computation programming model can be
classified by Task-Farming as shown in figure 1. Since
this paradigm is consisting of two entities which are
Master(server) and Slave(client). The server takes care
of decomposing the process into subtasks and distributes
them to all clients. After all, server has to collect all
subtasks result from each clients then merge them for
completed result.

Master
distribute tasks

/

Shave 1 Slave 2 Slave 4

Slave 3

Collect
Results

communications

T~

T~

Terminate

Figure 1. A client/server computation.

The implementation of parallel computing process is to
calculate the polynomial function as indicated in table 1.
The complexity is classified into 3 categories, low,
medium and high load. In order to understand the
parallel processing, the system is divided into 2 phases,
that is, server and client phases.

e Sever phase: Server firstly uses TCP/IP protocol
to poll the entire available clients. Server will
then decompose task (polynomial function)
based upon the number of available clients.
Server will distribute subtasks to entire clients
equally. Finally server will collect subtasks
results from clients and merge them into the
final result of the computation.

e C(lient phase: Client will be waiting for a
handling of subtask from server. After client
receives subtask, it will immediately execute the
polynomial function. When client finishes
execution of designated job, it will communicate
with server to transfer the subtask result back to
the server. Each subtask result will be tagged by
client using client IP address in order that server
can recognize the sequence of result to perform
merging. Clients then are released and wait for
other executions from the server. The
client/server model with n client nodes is
indicated in figure 2.

N(100')

Light load N(100*)

N(100°")

N(300°")

Medium load N(300*7)

N(100°")

N(200°%)

High load N(200%%)

N(400'%)

Table 1. Polynomial function for N client nodes.

Client 2 Client 4

,?m iﬁ 1

=l = i

Client 6 Client 7 Client 8 Clientn

Client 1 Chient 3 Client 5

|
N

Server

Client 9

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp211-216)

infinity, which means the capacity is unlimited and so is
the queue size. Queueing model for this client/server
architecture is shown in figure 3. The notation is
indicated in table 2.

Figure 2. A client/server architecture with n clients.
C. Queueing Model

Queuing theory is the study of the waiting times,
lengths, and other properties of queues expressed in
mathematical terms [4]. A queue can be simply defined
as a waiting line of objects that wait for a service. These
objects can be customers at a store waiting for a cashier,
a patient waiting at a medical clinic, packets of data in a
network, or requests from terminals to a server. In most
cases, six basic characteristics of queueing processes
provide an adequate description of a queueing system
[5]. The six basic characteristics are arrival pattern of
customers, service pattern of servers, queue disciplines,
system capacity, number of servers, and service classes.
Notation in queueing process, which is now the standard,
can be described by a series of symbols and slashes such
as A/B/X/Y/Z, where A represents the interarrival time
distribution, B represents the service pattern as described
by the probability distribution for service time, X is the
number of parallel servers, Y is the restriction on system
capacity, and Z is the queue discipline. Generally the
notation can solely be 4/B/X while Y and Z are
optional. The default value for ¥ and Z are applicable to

Server Network Client 1
INPUT. =
— e L Jeomed P T 1 1)
Client 2
Probability = 1-x —VE.
CIi!ent n
— |||
Figure 3. Queueing model.
Characteristics Symbol Explanation
M Exponential Fn
Interarrival time D Deterministic
distribution (4) Ey Erlang k (k=1,2,...)
q Mixture of &
Service time k exponentials
distribution (B) PH Phase Type
G General
Number of parallel 12, ... »
servers (X)
Restriction on 12 o
system capacity (Y) e
FCFS First come, first
served
LCFS Last Scec;iq:& first
Queue disciplines (2) Random selection
RSS .
for service
PR Priority
GD General Discipline

Table 2. Queueing notation A/B/X/Y/Z.

3.Input Parameters

All requests arrive in queue prior to server as shown in
figure 3. These requests will include requests from
clients (in transferring subtasks result) and from server
itself (in polling for available clients). Queue capacity in
our experiment is assumed to be infinite. The following
equation is employed in order to analyze the service time
at server (Ss).

Ss=G+C+D+G+F (1)

where Ss = Service time at server

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp211-216)

G = Polynomial generation time

C = Client nodes polling time

D = Subtask distribution time

G = Subtasks collection time

F = Results merging time
Parameter G (Polynomial generation time): The
polynomial function is assumed to reside in the server
for parallel processing beforehand then this parameter is
set to be 0 in the analysis.
Parameter C (Client nodes polling time): This parameter
can be estimated by utilizing the Sniffer program to
capture packets in the client/server reference model as
shown in figure 2.
Parameter D (Subtask distribution time): By using
sniffer program (Sniffer Pro version 4.7) in the
client/server reference model to check the average

subtask distribution time then the value is normalized
per node basis.

Parameter G (Subtasks collection time): This parameter
is estimated by using Sniffer program to capture the
entire packets produced by clients. The average time of
the slowest packets from clients is calculated.

Parameter F (Results merging time): This parameter
depends on the processing power of the server in figure
2 and can be estimated by using PAD (Parallel And
Distributed) Time calculation program. The “sum” time
is taken into the account to represent that server will
spend some time for results merging.

The queueing model will refer to 9 cases of
polynomial functions as shown in table 1. but number of
clients can scale up to 200. An example of input
parameters for 9 polynomial functions is listed in table 3.

No. Clients Ss G C D R F
200 0.172446371 0 | 0.000001 0.1704 2.652E-07 0.002045106
160 0.172957714 | 0 | 0.000001 0.1704 3.315E-07 0.002556383
120 0.173809952 | 0 | 0.000001 0.1704 | 0.000000442 0.00340851
80 0.175514428 | 0 | 0.000001 0.1704 | 0.000000663 | 0.005112765
72 0.176082587 | 0 | 0.000001 0.1704 | 7.36667E-07 | 0.005680851
64 0.176792786 | 0 | 0.000001 0.1704 8.2875E-07 0.006390957
56 0.177705898 | 0 | 0.000001 0.1704 | 9.47143E-07 | 0.007303951
48 0.178923381 0 | 0.000001 0.1704 | 0.000001105 | 0.008521276
40 0.180627857 | 0 | 0.000001 0.1704 | 0.000001326 | 0.010225531
32 0.183184571 0 | 0.000001 0.1704 1.6575E-06 0.012781914
24 0.187445762 | 0 | 0.000001 0.1704 0.00000221 0.017042552
16 0.195968142 | 0 | 0.000001 0.1704 | 0.000003315 | 0.025563827
8 0.221535285 | 0 | 0.000001 0.1704 0.00000663 0.051127655

Table 3. Example of service time (sec) at server for polynomial function 100"200.

The request of network service time (Sn) arrives from
both clients and server. Server and clients in the
queueing model (as shown in figure 3.) will share the
only communication service. After network service,
packets will be routed using probability £ in order to
distribute subtasks to client or using probability (/-k) if
communication service fails. and server. The network
service time arises from packet arrival at the network
service, after a suitable management time (overhead),
then an acknowledgement must be sent back to the
server once packets arrive client nodes. Network service
time can be modeled as shown in figure 4. and derived
by the following equation.

Sn=Mt+Pt+C+L/V+Pr+Mr 2)
where Sn = Network service time

Mt = Management time of the transmitter

Mpr = Management time of the receiver

Pt = Propagation delay of transmitter

Pr = Propagation delay of receiver

C = Carrier holding time

L = Total length of the packet

V' = Capacity of the communication line

The important notice is that the arrivals of the packets
come from both server and client. So the packets arrive
in a queue with a rate A and served at a rate p. The model
is represented by figure 4.

Network ,U

Arrival of new
Packets

Effective transmissioh‘
time of a packet

Figure 4. Network queueing model.

Parameter Mt (Management time of the transmitter):
Management time on the sender side are necessary for
encoding and monitoring, etc. Normally management
time on the sender side will be longer than management
time at the receiver side.

Parameter Mr (Management time of the receiver):
Management time on the receiver side is necessary for
decoding and monitoring, etc.

Parameter Pt (Propagation delay of transmitter):
Propagation delay is calculated by the standard of IEEE
802.3.

Parameter Pr (Propagation delay of receiver):
Propagation delay is also calculated by the standard of
IEEE 802.3.

Parameter C (Carrier holding time): is the network
equipment delay, for example, network interface card
(NIC). This delay is constant and assumed to be 0.00025
second.

Parameter L (Total length of the packet): This parameter
came from average number of packet in the reference
model (9 polynomial functions) by using sniffer program
to capture the entire package during experiment. The
length of the packet sent in the network is 663 bytes.
Parameter V (Capacity of the communication line): In
figure 2. the capacity of communication line is 100
Mbps. The figure will be used in the queueing model for
the analysis in order that both models are exactly
identical. The sample of network delay which is
estimated from equation 2 is shown in table 4.

Sn Mt Mr
1.66E-2 0.013 0.003
Pt=Pr C LV
2.56E-6 2.5E-4 4.24E-4

Table 4. Network service time for polynomial function.

Client requests will arise whenever clients try to
respond after subtask execution is completed. The client
service time (Sc) is estimated as written in the equation
3.

Sc=A+W+C+S 3)

where Sc = Client service time
A = Acknowledge time
W = Waiting time for data from server
C = Computation time
S = Result transmission time

Parameter A (Acknowledge time): the acknowledge
time to respond server through communication service.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp211-216)

Parameter W (Waiting time for data from server): this is
the time interval client has to wait after polling until data
from server arrives.

Parameter C (Computation time): this is time used by a
single client to execute subtask.

Parameter S (Result transmission time): This is the
delay time clients transmit their results to the server.

Client service time may vary according to different
subtasks but as an example the estimated parameter for
queueing analytical model is indicated in table 5.

Once server, network and client service time are
estimated then EZSIM simulation [6] will be employed.
By applying a Poisson process for the arrival and
Exponential distribution for service time, queueing
model as shown in figure 3 will be constructed. All
queue disciplines are set to be FCFS basis with unlimited
size. The simulation will be running long enough to
reach the steady state, as random number is part of the
execution.

4.Results and Analysis

Gain (Speedup) is sequential processing time divided by
parallel processing time. It is clearly seen that although our
proposed model produces different results (lower) compared
vis-a-vis results collected by 80 parallel computing units but
the curve goes in the same direction (trend) as shown in figure
5

S.CONCLUSION

With the identical (but lower) direction, the
compensation can be predicted for our proposed model
in order to approach an exact solution of the practical 80
units. The research to extend number of clients up to 200
is now undergoing in order to check the speed-up and
overhead with results from parallel processing system. If
cost-effectiveness is concerned then it can be concluded
that the proposed method can fasten the process in
receiving performance measures, which always go in the
line of accurate results from simulation. Not to mention
that computation cost is next to zero compared to time
consumed by simulation. The appropriate number of
processing units regarding to each executable tasks is
also under the investigation for future research in order
to lead to the optimization.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp211-216)

Clients Sc A \\ C S
200 0.005941883 0.000000015 0.000000108 0.005941494 2.652E-07
160 0.007427353 1.875E-08 0.000000135 0.007426868 3.315E-07
120 0.009903138 0.000000025 0.00000018 0.009902491 0.000000442
80 0.014854706 3.75E-08 0.00000027 0.014853736 0.000000663
72 0.016505229 4.16667E-08 0.0000003 0.016504151 7.36667E-07
64 0.018568383 4.6875E-08 3.375E-07 0.01856717 8.2875E-07
56 0.021221009 5.35714E-08 3.85714E-07 0.021219623 9.47143E-07
48 0.024757844 6.25E-08 0.00000045 0.024756226 0.000001105
40 0.029709413 0.000000075 0.00000054 0.029707472 0.000001326
32 0.037136766 9.375E-08 0.000000675 0.03713434 1.6575E-06
24 0.049515688 0.000000125 0.0000009 0.049512453 0.00000221
16 0.074273532 1.875E-07 0.00000135 0.074268679 0.000003315
8 0.148547064 0.000000375 0.0000027 0.148537359 0.00000663

Table 5. Client service time (sec) for polynomial function 100°100.

Gain 8 - 80 clients for 2002600 function

15 / /
10
5 l//
o«
0 T T T T T T
8 16 24 32 40 48 56 64 72 80

Clients

40
35
S —
T 25 A -
o —e— Gain
2 20 .
90 —=— Reference Gain
=
<
o

Figure 5. Gain 8 — 80 clients for 200"600 function.

[5] Donald Gross and Carl M. Harris. “Fundamentals of
Queueing Theory,”: third edition, Canada, A Wiley-
Interscience Publication, 1998.

6] Behrokh Khoshnevis. “Discrete systems simulation,”
University of southern California, McGraw-Hill inc.,
1994.

6.References

[1] Fujimoto and Richard M., “Parallel and Distributed
Simulation Systems.,” 2000.

[2] Sutaweesup, Wasara, and Yuen Poovorawan.
“Parallel Motion Path Calculation for Animated
Objects in Distributed Environment,” 2000.

[3] Kormicki, Maciek, Ausif Mahmood and Bradley S.
Carlson, “Parallel Logic Simulation on a Network of
Workstations Using a Parallel Virtual Machine,”
Washington State University at Tri-Cities,
University of Bridgeport, State University of New
York at Stony Brook, pp. 123-134, 1997.

[4] Wail Elias Mardini, “Modeling with D-queues,” The
University of New Brunswick, April, 2001.

	1.Introduction
	2.Client/Server Architecture
	3.Input Parameters
	4.Results and Analysis

