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Abstract: - A neural network based coherent detector is proposed for detecting gaussian targets in gaussian 
clutter. Target and clutter ACF are supposed gaussian with different powers and one lag correlation coefficients. 
While clutter mean Doppler frequency is set to 1, the influence of target mean Doppler frequency is considered. 
The neural detector performance is compared to the Neyman-Pearson one. For evaluating the neural detector 
performance, Montecarlo Simulation and Importance Sampling Techniques are used in order to assure a low 
relative error with a suitable computational charge. Results show that a low complexity neural network can 
implement very good approximations of the Neyamn-Pearson detector for the case of study. In the presented 
cases, the MLP performance tends to decrease when the TSIR (Training Signal to Interference Ratio) decreases 
to very low values, but it is more robust when the correlation characteristics of target and clutter are varied. 
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1   Introduction 
This paper deals with the study of the Neyman-
Pearson (NP) detector for radar target detection in 
clutter, and the possibility of using neural networks 
(NNs) for implementing robust approximations to 
this detector. The NP detector maximizes the 
probability of detection (PD), while maintaining the 
probability of false alarm (PFA) lower than or equal to 
a given value [1]. The problem of detecting radar 
echoes in additive, white, Gaussian noise has been 
studied widely, but less attention has been paid to the 
problem of detecting radar targets in clutter. 

In relation with the application of NNs to radar 
detection problems, Ruck et al. [2] and Wan [3] 
demonstrated that a NN can be used to approximate 
the optimum bayessian classifier, when trained using 
the least mean squared-error (LMSE) criterion. NNs 
have also been applied to approximate the NP 
detector [4,5]. In these works, multi-layer perceptrons 
(MLPs) with a hidden layer and one output, trained 
using the standard back-propagation (BP) algorithm 
were used to detect deterministic signals and non-
fluctuating targets with zero doppler frequency 
considering different white interference models.  

The detection of fluctuating tatgets using NNs has 
been studied in [6,7], assuming Swerling I and II 
fluctuation models [8], (target amplitude Rayleigh 
distributed) . 

In this paper, the detection of Rayleigh targets 
with a one lag correlation coefficient in the range 
(0,1) (1 corresponds to Swerling I targets and 0 
corresponds to Swerling II ones) and gaussian 

autocorrelation function (ACF) is studied. The clutter 
is modeled also as a Gaussian process with gaussian 
ACF. The gaussian probability density function (pdf) 
can be used for modeling atmospheric clutter, but the 
pdf of land and sea clutter only can be modeled as 
gaussian when the radar resolution cell, or area 
illuminated by the radar, is relatively large. 
Traditionally, clutter power spectral density (PSD) 
has been modeled as gaussian, but it has been 
demonstrated that land and rain clutter are better 
modeled as [8]: 
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So, although the clutter model that assumes 

gausian pdf and ACF is not the better choice for 
many practical situations, the fact that the Neyman-
Pearson detector is easy to obtain and analyze, makes 
it a powerful tool to prove the ability of NNs to 
approximate the Neyman-Pearson detector and to 
analyze the robustness improvement that can be 
obtained using NN based detectors instead the 
optimum one. Note that no assumption is made about 
the target and interference models during the training 
process, so the results obtained with the considered 
models can be generalized to prove the possibility of 
using NNs in practical situations where target and 
interference statistics are unknown and difficult to 
estimate.   
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As a previous step, the NP detector is calculated. 
For training the MLPs, the Levenberg-Marquardt 
(LM) [9] algorithm is used. To evaluate the 
performance of the trained MLP, its Receiver 
Operating Characteristic (ROC) curve is estimated 
and compared to the Neyman-Pearson detector one. 
The PD is estimated by conventional Montecarlo 
simulation, but for estimating the PFA Importance 
Sampling techniques are used in order to obtain a low 
relative error with a reasonably computational charge 
[10,11]. Finally, after a careful study of the results, 
the more relevant conclusions are extracted. 
 
 
2   Problem Formulation 
The target echo is modeled as a gaussian complex 
vector of dimension n, and gaussian ACF, with a 
covariance matrix Ms.  
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Where: 

• ps is the target power. 
• fs is the target mean Doppler frequency 

normalized to the radar pulse repetition frequency 
(PRF). Note that the PRF is the sampling 
frequency of the system- 

• ρs is the target one lag correlation coefficient. 
 

The interference is modeled as white, gaussian 
noise (thermal noise) plus gaussian clutter with 
gaussian ACF, so the associated covariance matrix is 
given by: 
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Where: 

• pw and pc are the white noise and the clutter 
powers, respectively.  

• δhk is the Kronecker delta 
• ρc is the clutter one lag correlation coefficient. 
 

Without loss of generality, as detection 
performance is a function of the difference between 
the target Doppler frequency and the clutter one, it 
has been assumed a clutter Doppler frequency equal 
to zero. 
As a normalization criterion, pw is assumed equal to 2 
(in-phase and in-quadrature components of the white 
noise interference components are of unity variance), 
and taking this into consideration the clutter to noise 
ratio (CNR) and the signal to interference (SIR) ratios 
can be expressed as: 
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Fig. 1. PDS of target and clutter (solid thick line) 
for CNR=20 dB, SIR= 4, -4 and -8 dB and fs=0,25 
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Fig. 2. PDS of target (thin lines) and clutter 

(thick line) for CNR=20 dB, SIR= -8 dB,  fs=0.25 
and different one lag correlation coefficients. 
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In figure 1 the PSD of the clutter and the target are 
represented for CNR=20dB and SIR=4 and -8 dB. A 
CNR equal to 20 dB represents a case where clutter is 
not dominant. The environment dominated by clutter 
can be studied without considering thermal noise. 
The two values of SIR are the extreme ones that have 
been selected for presenting the results. On the other 
hand, the target mean Doppler frequency normalized 
to the radar PRF is equal to 0,25, an intermediate 
value between 0 (target and clutter PSDs are 
superimposed) and 0.5 (the higher difference between 
target and clutter mean Doppler frequencies). The 
one lag correlation coefficients of the target and the 
clutter are equal to 0.9. 

In figure 2, clutter and target PSDs for CNR=20dB, 
SIR=-8 dB,  fs = 0,25 and different one lag correlation 
coefficients are represented. 

Figures 1 and 2 show how the power, the spectral 
width and the mean Doppler frequency of the clutter 
and the target are critical parameters that determine 
the detection capabilities of any detection scheme, 
including the Neyman-Pearson detector. 

In the next section, the Neyman-Pearson detector is 
obtained and studied as a previous step for designing 
the NN based detector. 

 
 

2.1 Neyman-Pearson decision rule 
The pdf of a n-dimension complex gaussian random 
vector, z, with zero mean and covariance matrix C is 
expressed as: 
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The Neyman-Pearson detection rule is the result of 

comparing the likelihood ratio, or any monotonic 
function of it, to a detection threshold fixed attending 
to PFA requirements (5).  
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The detection problem likelihood functions can be 

obtained substituting the covariance matrixes (2) and 
(3) in (4) for the alternative (H1) and null (H0) 
hypothesis, respectively. The decision rule based on 
the likelihood ratio is presented (6) 
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Decision rule (6) can be simplified as: 
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2.2 Neyman-Pearson detector performance 
The false alarm probability (PFA) and the detection 
porbability (PD) of the decision rule (7) have been 
calculated in [12]. They can be obtained from the pdf 
of the test variable q = zTQz* in the hypotesis H0 and 
H1 (7): 
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Using the inverse transform of the Fourier domain 

characteristic of fq(q), the  probability of exceeding a 
threshold T can be expressed as: 
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PFA can be calculated from, (8) if λ(i) are the 
eigenvalues of Mn

*Q*, while for obtaining PD, λ(i) 
must be the eigenvalues of (Mn+Ms)*Q*. As U(·) is 
the unit step, the sum is extended to the terms with 
positive eigenvalues. 

In figures 3 and 4 the ROC curves of the Neyman-
Pearson detector for the cases considered in figures 1 
and 2, are presented. Note that the detection loss that 
is observed when the clutter spectrum is wider, is 
higher than that observed when the target spectrum is 
wider.   
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Fig. 3. Neyman-Pearson detector ROC curves for the 
cases considered in figure 1 (CNR=20 dB, SIR= 4 
and -8 dB, ρc=ρs=0.9  and fs=0.25) 
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Fig. 4. Neyman- Pearson detector ROC curves for the 
cases considered in figure 2 (CNR=20 dB, SIR= -8 
dB, fs=0.25 and different one lag correlation 
coefficients) 
 
 
3   Design of experiments and results 
In Air Traffic Control radar, the usual number of 
collected pulses in a scan is n=8. So this will be the 
assumed value in all the experiments. 

As we have selected MLPs that woks with real 
inputs and real arithmetic, the complex vectors must 
be transformed in 2n-dimension real ones. It is 
assumed that each real input vector is composed of 
the real parts (the first n samples) and the imaginary 
parts (the remaining n samples) of the samples of the 
complex patterns. So MLPs with 2n=16 inputs have 
been trained.  

MLPs are followed by a hard threshold detector 
whose threshold is fixed after training attending to 
PFA requirements. If the NN output is greater than the 
threshold, H1 is accepted, in other case, H0 is 
accepted.  

For designing the Neyman-Pearson detector, a set 
of parameters have to be known: CNR, SIR, fs ρs and 
ρc.  

The detector that implements rule (6), or any 
other equivalent to it, will be optimum if the 
parameters that characterize both hypothesis are those 
assumed during the design. If this is not the case, the 
designed detector will not be optimum and a loss in 
detection capability will be observed. 

When training the NN, these design parameters 
are called training parameters. The NN 
approximation error is expected to be a function of 
the selected training parameters, and in order to 
evaluate this dependence different sets of training 
parameters have been selected. The Training Signal 
to Noise ratio has been varied from -8dB to 4dB, 

while one lag correlation coefficients ranging from 
0.6 to 0.9 have been considered. Finally, only results 
for fs equal to 0.25 and 0.5 are presented.  

0 0.2 0.4 0.6 0.8 1
0.9

0.95

1

P
D

0 0.2 0.4 0.6 0.8 1
0

0.5

1

PFA

P
D

ρc=0,9 ρs=0,6

ρc=0,9 ρs=0,9

ρc=0,6 ρb=0,9

For each set of training parameters, separated 
training and validation sets composed of 50,000 
randomly distributed patterns from H0 and H1 have 
been generated.  

In all cases, results are presented for MLPs with 
one hidden layer of four neurons. This number has 
been determined after a exhaustive trial and error 
process as a compromise between complexity and 
performance improvement. In order to speed up the 
training process of the MLPs, the hyperbolic tangent 
sigmoid transfer function has been used  

NNs have been trained for minimizing the LMSE, 
using Levenberg-Madquardt algorithm (LM) (with 
adaptive parameter) [9]. The LM is based on the 
Newton method. The weights adaptation rule of the 
Newton method is expressed in (9). 
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where H is the Hessian matrix (second derivatives) of 
the performance index at the current values of the 
weights. Unfortunately, it is complex and expensive 
to compute the Hessian matrix for MLPs. Actually, 
the LM is based on the Gauss-Newton method, which 
has been designed specifically for minimizing the 
LMSE. In this case, as the error function has the form 
of a sum of squares, the Hessian matrix can be 
approximated as H=J-T•J, where J is the Jacobian 
matrix that contains the first derivatives of the 
network errors with respect to the weights. The LM 
algorithm actualization rule is expressed in (10). 
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When the scalar µ is zero, this is just Newton's 

method, using the approximate Hessian matrix. When 
µ is large, this becomes gradient descent with a small 
step size. µ is decreased after each successful step 
(reduction in performance function) and is increased 
only when a tentative step would increase the 
performance function. In this way, the performance 
function will always be reduced at each iteration of 
the algorithm. 

A cross-validation technique has been used to 
avoid over-fitting and all NNs have been initialized 
using the Nguyen-Widrow method [13]. For each 
case, the training process has been repeated ten times. 
Only the cases where the performances of the ten 
trained networks were similar in average, have been 
considered to extract conclusions.  
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Fig. 5. ROC curves for the Neyman-Pearson detector 
(wider line) and the MLP one (thinner line) for 
CNR=20 dB, TSIR=4 dB, ρs=0.6, ρc=0.9 and fs=0.25. 
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Fig. 6. ROC curves for the Neyman-Pearson detector 
(wider line) and the MLP one (thinner line) for 
CNR=20dB, TSIR=0 dB, ρs=0.6, ρc =0.9 and fs=0.25. 
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Fig. 7. ROC curves for the Neyman-Pearson detector 
(wider line) and the MLP one (thinner line) for 
CNR=20dB, SIR=-4 dB, ρs =0.6, ρc =0.9 and fs=0.25. 
 

Since for radar applications only low PFA values 
are of interest, results are presented for PFA lower 
than 10-3. These values have been estimated using 
Importance Sampling Techniques (relative error 
lower than 10% in the presented results) [10,11]. The 
selected strategy involves modifying the covariance 
matrix under hypothesis Ho, multiplying the original 
one by a small factor K=1.1: 
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Fig. 8. ROC curves for the Neyman-Pearson detector 
(wider line) and the MLP one (thinner line) for 
CNR=20dB, TSIR =-8dB, ρs=0.6, ρc=0.9 and fs=0.25. 

0 0.2 0.4 0.6 0.8 1

x 10-3

0.7

0.75

0.8

0.85

0.9

0.95

1

MLP
Optimum

 
Fig. 9. ROC curves for the Neyman-Pearson detector 
and the MLP one for CNR=20dB, TSIR=-8 dB, 
ρs=0.9, ρc=0.9 and fs=0.25. 
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Fig. 10. ROC curves for the Neyman-Pearson 
detector and the MLP one for CNR=20 dB, TSIR =-8 
dB, ρs =0.9, ρc =0.6 and fs=0.25. 

 
PD values have been estimated using conventional 

Montecarlo simulation. Using sets of 80,000 patterns 
generated under hypothesis H1, an estimation error 
lower than 1% is guaranteed in all the results. 

In figures 5-8, the dependence of MLPs 
performance on TSIR is studied. Results show that 
the MLP approximation error increases when the 
TSIR decreases. This behaviour can be explained 
taking into consideration that weak targets are more 
difficult to characterize. The worst behavior is 
observed for the lowest TSIR, -8 dB: the PD is lower 
for the same PFA.  n     (10) 
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In figures 9 and 10, the influence of target and 
clutter one lag correlation coefficients is studied. The 
fixed clutter and target characteristics are: CNR=20 
dB, TSIR =-8 dB and fs=0.25. Due to the great 
detection performance decrease, in figure 10 the 
scales have had to be changed.  The clutter power is 
much higher than the target one, so the detector 
performance is more sensible to variations in clutter 
correlation characteristics. 
  
 
4   Conclusion 
The application of neural networks for detecting 
Rayleigh radar targets with gaussin ACF in gaussian 
clutter with gaussian ACF plus white noise has been 
considered. The Neyman-Pearson detector and its 
ROC curves have been calculated. The influence of 
design parameters such as the TSIR and one-lag 
correlation coefficients of target and clutter has been 
studied. 

MLPs with one hidden layer of four neurons have 
been trained using the LM algorithm. Results show 
that an MLP can approximate the Neyman-Pearson 
detector for very low PFA values and a wide range of 
TSIR values, but the approximation error increases 
when the TSIR decreases, because weaker targets are 
more difficult to characterize.  

When ρs or ρc are varied, results show that the 
sensibility of MLP performance is lower that that 
observed when varying the TSIR.  

The obtained results prove the possibility of using 
NN to approximate the optimum detector without 
knowledge of the statistical properties of the 
detection problem, making use of sets of pre-
classified patterns. 
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