
A Complexity Measure Based on Information Contained in the Software

DHARMENDER SINGH KUSHWAHA and A.K.MISRA
Department of Computer Science and Engineering
Moti Lal Nehru National Institute Of Technology

Allahabad,
INDIA.

Abstract: - Cognitive Informatics is a field that studies internal information processing mechanism of the human
brain and its application in software coding and computing. This paper attempts to empirically demonstrate the
amount of information contained in software and develops a concept of cognitive information complexity measure
based on the information contained in the software. It is found that software with higher cognitive information
complexity measure has more information units contained in it. Therefore cognitive information complexity
measure can be used to understand the cognitive information complexity and the information coding efficiency of
the software. For any complexity measure to be robust, Weyuker properties must be satisfied to qualify as good and
comprehensive one. In this paper, an attempt has also been made to evaluate cognitive information complexity
measure in terms of nine Weyuker properties, through examples. It has been found that all the nine properties have
been satisfied by cognitive information complexity measure and hence establishes cognitive information
complexity measure based on information contained in the software as a robust and well-structured one.

Keywords: - Cognitive Informatics, Information Unit,
Complexity Information Complexity, Weighted
Information Count, Cognitive Information Complexity
Unit, Information Coding Efficiency.

1 Introduction
The first obvious question is “What is Complexity?”
IEEE defines software complexity as “the degree to
which a system or component has a design or
implementation that is difficult to understand and
verify [2].

Over the years, research on measuring the software
complexity has been carried out to understand, what
makes computer programs difficult to comprehend.
Few measures have shown concern to propose the
complexity measures whose computation itself is not
complex. A major force behind these efforts is to
increase our ability to predict the effort, quality,
coding efficiency, cost or all of these. Major
Complexity measures of software’s that refer to effort,
time and memory expended have been used in the
form of Halstead’s software metric [1], McCabe’s
cyclomatic complexity [4], Klemola’s KLCID
Complexity Metric [6], Wang’s cognitive functional
complexity [10] and many more.

Cognitive complexity measures are still in the nascent
stage and it refers to the human effort needed to
perform a task or the difficulty experienced in
understanding the code or the information packed in
it. In cognitive informatics, it has been found that the
functional complexity of software is dependent on
internal architectural control flows and their inputs
and outputs [8, 9]. Cognitive informatics process also
takes into account the information contained in a
software [11]. Our proposed metric goes a step ahead
to model the functional complexity of software based
not only on the inputs and outputs but also on the
identifiers and operators used in the code. Our
measure is based not only on the syntactic aspects of
the program but semantically derives cognitive
information complexity measure. A fundamental
research of cognitive informatics is the difficulty
encountered in understanding the software. Therefore
we need to answer the following question:

• What makes software difficult to understand?

 To answer this question, we need to answer another
question:
• Is there a relationship between the above-

mentioned question and the cognitive
complexity of the software?

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp187-195)

To answer both the above-mentioned questions, we
begin with a review of existing software complexity
measures in Section 2. Section 3 proposes a new
cognitive information complexity measure based on
the information contained in the software and answers
of the above questions. Section 4 carries out the
robustness analysis of our measure using Weyuker
properties. Section 5 carries out the comparative study
of cognitive information complexity measure and
other measures in terms of Weyuker properties.
Section 6 concludes our paper.

2 Existing Cognitive Complexity
Measures of Software Complexity
2.1 KLCID Complexity Metric
Klemola and Rilling [6] proposed KLCID based
cognitive complexity measure in 2004. It defines
identifiers as programmers defined labels (variable
name, class name, object name etc) and based on this
Identifier Density (ID) is defined as :

ID = Total No. of Identifiers / LOC

For calculating KLCID, it finds number of unique
lines of code, lines that have same type and kind of
operands with same arrangement of operators would
be considered equal. Hence (a = b + c) ≈ (d = e + f)
when a, b, c, d, e and f are of the same type. It then
defines KLCID as:

KLCID = No. Of identifiers in the set of unique
lines / No. of unique lines containing identifier

It is noteworthy that the above approach can become
very difficult, complex and time consuming when
comparing a line of code with each line of the
program. It also assumes that internal control
structures for the different software’s are same.

2.2 Cognitive Functional Complexity (CFS)
Wang and Shao [10] have proposed cognitive
functional size to measure the cognitive complexity.
The measure defines the cognitive weights for the
Basic Control Structures (BCS) as under:

Category BCS Wei
ght

Sequence Sequence (SEQ) 1
Branch If-Then-Else

(ITE)
2

 Case 3
Iteration For-do 3
 Repeat-until 3
 While-do 3
Embedde
d
Compone
nt

Function Call
(FC)

2

 Recursion (REC) 3
Concurre
ncy

Parallel (PAR) 4

 Interrupt (INT) 4

 Table 2 : Definition of BCS's and their
Equivalent Cognitive Weight

Cognitive functional size of a software is defined as :

CFS = (Ni + No)* Wc

Where Ni = Number of inputs,
 No= Number of outputs,
 Wc = Total cognitive weight of the software.

Wc is defined as the sum of cognitive weights of its q
linear blocks composed in individual BCS’s. Since
each block may consist of ‘m’ layers of nesting
BCS’s, and each layer with ‘n’ linear BCS, total
cognitive weight is defined as:

 q m n
Wc = ∑ [Π ∑ Wc(j,k.i)]
 J=1 k=1 I=1

Only one sequential structure is considered for a given
component.
Although the cognitive functional size is a good
measure, it does not provide an insight into the
amount of information contained in a software.

3 Cognitive Information Complexity
Measure (CICM)
Various theories have been put forward in establishing
a clear relationship between a piece of code and its
information content. Once we have a measure of the
information contained in the software, study of
information processing mechanism becomes easier.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp187-195)

Wang [11] demonstrated that software obeys the laws
of Informatics and the Cognitive Science based on the
following assertions:

• Software represents computational information.
• Software is a mathematical entity.
• Software is the coded solution to a given program.
• Software is a set of behavioral instructions to

computer.

Wang [11], further says that Information is the third
essence in modeling the natural world supplement to
matter and energy. Wang [12] defines software as
“Software in cognitive informatics is perceived as
formally described design information and
implementations instructions of computing
application” i.e.

Software ≈ Information

Thus, if software is equivalent to information, it
implies that

Difficulty in understanding ≈ Difficulty in
the software understanding
 the information

Hence the cognitive complexity of the software should
be based on the measure that takes into account the
amount of information contained in the software.

Since software represents computational information
and is a mathematical entity, the amount of
information contained in the software is a function of
the identifiers that hold the information and the
operators that perform the operations on the
information.

Information = f (Identifiers, Operators)
Identifiers are variable names, defined constants and
other labels in a software. Therefore information can
be defined as:

Definition 1: Information contained in one line of
code is the number of all operators and operands in
that line of code. Thus in kth line of code the
Information contained is:

Ik = (Identifiers + Operands)k

 = (IDk + OPk) IU

Where ID = Total number of identifiers in the kth
LOC of software,
OP = Total number of operators in the kth LOC of
software,
IU is the Information Unit representing that at least
any identifier or operator has one unit information in
them.

Definition 2: Total Information contained in
software (ICS) is sum of information contained in
each line of code i.e.

 LOCS
ICS = Σ Ik
 k=1
Where Ik = Information contained in kth line of code,
 LOCS = Total lines of code in the software.

Thus, it is the information contained in the identifiers
and the necessary operations carried out by the
operators in achieving the desired goal of the
software, which makes software difficult to
understand. This answers our first question.

Once we have established that software can be
comprehended as information defined in information
units (IU’s), the measure of the complexity of the
software should contain the above parameters. Based
on this fact weighted information count is been
introduced as in definition 3.

Definition 3: The Weighted Information Count of a
line of code (WICL) of a software is a function of
identifiers, operands and LOC and is defined as:

 WICLk = ICSk / [LOCS – k]

Where WICk = Weighted Information Count for the
kth line,
 ICSk = Information contained in a software
for the kth line.

Therefore The Weighted Information Count of the
Software (WICS) is defined as :

 LOCS
WICS = Σ WICLk
 k = 1

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp187-195)

In order to be a complete and robust measure, the
measure of complexity should also consider the
internal control structure of the software. These basic
control structures have also been considered as the
Newton’s law in software engineering [9, 10]. These
are a set of fundamental and essential flow control
mechanisms that are used for building the logical
architectures of software.

Using the above properties, we introduce a new
cognitive information complexity measure in
definition 4.

Definition 4: The sum of the cognitive weights of
basic control structures (SBCS) is defined as under:
Let W1, W2 ….. Wn be the cognitive weights of the
basic control structures (as given in Table 2) in the
software.
 n
Then SBCS = Σ (Wi)
 i = 1
Definition 5: Cognitive Information Complexity
Measure (CICM) is defined as the product of
weighted information count of the software (WICS)
and sum of the cognitive weights of basic control
structures (SBCS) of the software.

CICM = WICS * SBCS

Our complexity measure encompasses all the major
parameters that have a bearing on the difficulty in
comprehending software or the cognitive complexity
of the software. It clearly establishes a relationship
between difficulty in understanding software and its
cognitive complexity. It introduces a method to
measure the amount of information contained in the
software thus enabling us to calculate the coding
efficiency (EI) as in definition 5.

Definition 6: Information Coding Efficiency (EI) of
a software is defined as

(EI) = ICS / LOCS.

The cognitive information complexity is higher for the
programs, which have higher information coding
efficiency [3]. All the above measures have been
illustrated with the help of an example below.

Example 1: An algorithm to calculate the average of a
set of numbers as shown below is used to illustrate the
application of CICM to measure the complexity.

 An algorithm to calculate the average of a set of
‘n’numbers

Calculation of KLCID complexity measure
Total no. of identifiers in the above program = 18
Total no. of lines of code = 17
ID = 18/17 = 1.05
No. of unique lines containing identifier = 9
No. of identifiers in the set of unique lines = 11
KLCID = 11 / 9 = 1.22

Calculation of CFS
Number of inputs Ni = 1
Number of outputs No = 3
BCS(sequence) W1 = 1
BCS(while) W2 = 3
Wc = W1 + W2 = 1+3 = 4
CFS = (Ni + No)* Wc = (1+3)*4 = 16

Calculation of CICM
LOC = 17
Total no. of identifiers = 18
Total no. of operators = 4
BCS(sequence) W1 = 1
BCS(while) W2 = 3
SBCS = W1 + W2 = 1+3 = 4
WICS = [1/16 + 1/13 + 3/12 + 1/11 + 1/10 + 3/9 +
1/7 + 4/6 + 3/5 + 4/3] = 3.63
CICM = WICS * SBCS = 3.63 * 4 = 14.53

define N 10
main()
{
int count;
float sum, average, number;
sum = 0;
count = 0;
while (count < N)
{
 scanf(“%f”, &number);
 sum = sum + number;
 count = count + 1;
}
average = sum/N;
Printf(“N=%d sum = %f”’,N,sum);
Printf(“average = %f”’average);
}

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp187-195)

Information Coding Efficiency (EI) of the above
program = 22/17 = 1.29

The cognitive information complexity of the
algorithm in fig. 1 is 14.53 CICU (Cognitive
Information Complexity unit).

5 Evaluation of Cognitive Information
Complexity Measure
Weyuker [7] proposed the nine properties to evaluate
any software complexity measure. These properties
also evaluate the weakness of a measure in a concrete
way and in turn lead to the definition of really good
notion of software complexity. With the help of these
properties one can determine the most suitable
measure among the different available complexity
measures [5]. In the following paragraphs, the
cognitive information complexity measure has been
evaluated against the nine Weyuker properties for
establishing itself as a robust and comprehensive
measure.

Property 1: (∃P)(∃Q)(|P| ≠ |Q|) Where P and Q are
program body.

This property states that a measure should not rank all
programs as equally complex. Now consider the
following two examples given in Fig. 1 and Fig. 2 in
Appendix I. For the program given in Fig. 1 in
Appendix I, there are two control structures: a
sequential and a iteration. Thus cognitive weight of
these two BCS’s is 1 + 3 = 4.
Weighted information count for the above program is
as under:
WICS = 3/6 + 1/4 +6/3+4/2 = 4.75
Hence Cognitive information complexity measure
(CICM) is:
CICM = WICS * SBCS = 4.75 * 4 = 19.0

For the program given in Fig. 2 in Appendix I there is
only one sequential structure and hence the cognitive
weight SBCS is 1. WICS for the above program is
2.56. Hence CICM for the above program is 2.56 * 1
= 2.56.
From the complexity measure of the above two
programs, it can be seen that the CICM is different for
the two programs and hence satisfies this property.

Property 2: Let c be a non-negative number. Then
there are only finitely many programs of complexity c.

Calculation of WICS depends on the number of
identifiers and operators in a given program statement
as well as on the number of statements remaining that
very statement in a given program. Also all the
programming languages consist of only finite number
of BCS’s. Therefore CICM cannot rank complexity of
all programs as c. Hence CICM holds for this
property.

Property 3: There are distinct programs P and Q such
that |P| = |Q|.
For the program given in Fig. 3 in Appendix I, the
CICM for the program is 19, which is same as that of
program in Fig. 1. Therefore this property holds for
CICM.

Property 4: (∃P)(∃Q) (P≡Q & |P| ≠ |Q|)

Referring to program illustrated in Fig.1, we have
replaced the while loop by the formula “sum =
(b+1)*b/2” and have illustrated the same in Fig.2.
Both the programs are used to calculate the sum of
first n integer. The CICM for both the programs is
different, thus establishing this property for CICM.

Property 5: (∀P)(∀Q)(|P| ≤ |P;Q| and |Q| ≤ |P;Q|).

Consider the program body given in Fig.4 in
Appendix I: The program body for finding out the
factorial of a number consists of one sequential and
one branch BCS’s. Therefore SBCS = 3. For the
program body for finding out the prime number, there
are one sequential, one iteration and two branch
BCS’s. Therefore SBCS = 1+ 2+3+2 = 9. For the main
program body for finding out the prime and factorial
of the number, there are one sequential, two call and
one branch BCS’s. Therefore SBCS =
(1+2+2+2)+3+9 = 19. WICS for the program is 5.1.
Therefore the Cognitive Information Complexity
Measure for the above program = 5.1 * 19 = 96.9.

Now consider the program given in Fig.5 in Appendix
I to check for prime. There is one sequential, one
iteration and three branch BCS’s. Therefore SBCS =
1+2+3+2+2 = 10. WICS = 1.85. So CICM = 1.85 * 10
= 18.5.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp187-195)

For the program given in Fig.6 in Appendix I, there is
one sequential, one iteration and one branch BCS’s .
SBCS for this program is 6 and WICS is .5.11. Hence
CICM = WICS * SBCS = 5.11 * 6 = 30.66.

It is clear from the above example that if we take the
two-program body, one for calculating the factorial
and another for checking for prime whose CICM are
18.5 and 30.66 that are less than 96.9. So property 5
also holds for CICM.

Property 6(a) : (∃P)(∃Q)(∃R)(|P| = |Q|) & (|P;R| ≠
|Q;R|)
Let P be the program illustrated in Fig.1 and Q is the
program illustrated in Fig.3. The CICM of both the
programs is 19. Let R be the program illustrated in
Fig.6. Appending R to P we have the program
illustrated in Fig.7 in Appendix I.
Cognitive weight for the above program is 10 and
WICS is 8.3. Therefore CICM = 8.3*10=83.
Similarly appending R to Q we have SBCS = 10 and
WICS = 8.925. Therefore CICM = 8.925*10 = 89.25
and 83 ≠ 89.25. This proves that Property 6(a) holds
for CICM.

Property 6(b): (∃P)(∃Q)(∃R)(|P| = |Q|) & (|R;P| ≠
|R:Q|)

To illustrate the above property let us arbitrarily
append three program statements in the programs
given in Fig.1, we have the program given in Fig.8 in
Appendix I. There is only one sequential and one
iteration BCS. Hence cognitive weight is 1 + 3 = 4.
There is only one sequential and one iteration BCS.
Hence cognitive weight is 1 + 3 = 4 and WICS = 5.58.
So CICM = 5.58 * 4 = 22.32.
Similarly appending the same three statements to
program in Fig.3 we again have cognitive weights = 4
and WICS = 5.29. Therefore CICM = 21.16 ≠ 22.32.
Hence this property also holds for CICM.

Property 7: There are program bodies P and Q such
that Q is formed by permuting the order of the
statement of P and (|P| ≠ |Q|).
Since WICS is dependent on the number of operators
and operands in a given program statement and the
number of statements remaining after this very
program statement, hence permuting the order of
statement in any program will change the value of
WICS. Also cognitive weights of BCS’s depend on

the sequence of the statement [1]. Hence CICM will
be different for the two programs. Thus CICM holds
for this property also.

Property 8 : If P is renaming of Q, then |P| = |Q|.

CICM is measured in numeric and naming or
renaming of any program has no impact on CICM.
Hence CICM holds for this property also.

Property 9: (∃P)(∃Q)(|P| + |Q|) < (|P;Q|)
OR
(∃P)(∃Q)(∃R)(|P| + |Q| + |R|) < (|P;Q;R|)

For the program illustrated in Fig.4, if we separate the
main program body P by segregating Q (prime check)
and R (factorial), we have the program illustrated in
Fig.9 as shown in Appendix I. The above program has
one sequential and one branch BCS. Thus cognitive
weight is 7 and WICS is 1.475. Therefore CICM =
10.325. Hence 10.325 + 18.5 + 30.66 < 96.9. This
proves that CICM also holds for this property.

6 Comparative Study of Cognitive
Information Complexity Measure and
Other Measures in Terms of
Weyuker Properties
In this section cognitive information complexity
measure has been compared with other complexity
measures in terms of all nine Weyuker’s properties.

P.N.- Property Number, S.C.- Statement Count, C N. -
Cyclomatic Number, E.M.- Effort Measure, D.C.-
Dataflow Complexity, C.C.M. - Cognitive Complexity
Measure, CICM – Cognitive Information Complexity
Measure, Y- Yes, N – NO
 Table l.

P.N. S.C. C.N. E.M D.C C.C.M C.I.C.M.
1 Y Y Y Y Y Y
2 Y N Y N Y Y
3 Y Y Y Y Y Y
4 Y Y Y Y Y Y
5 Y Y N N Y Y
6 N N Y Y N Y
7 N N N Y Y Y
8 Y Y Y Y Y Y

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp187-195)

9 N N Y Y Y Y

Table 1: Comparison of complexity measures with
Weyuker properties.

It may be observed from the table 1 that complexity of
a program using effort measure, data flow measure
and Cognitive Information Complexity Measure
depend directly on the placement of statement and
therefore all these measures hold for property 6 also.
All the complexity measure intend to rank all the
programs differently

7 Conclusion
This paper has developed the cognitive information
complexity measure (CICM) that is based on the
amount of information contained in the software. It is
a robust method because it encompasses all the major
parameters that have a bearing on the difficulty of
comprehension or the cognitive complexity of the
software. This measure is computationally simple and
will aid the developers and practitioners in evaluating
the software complexity, which serves both as an
analyzer and a predicator in quantitative software
engineering. Software quality is defined as the
completeness, correctness, consistency, no
misinterpretation, and no ambiguity, feasible
verifiable in both specification and implementation.
For a good complexity measure it is very necessary
that the particular complexity measure not only
satisfies the above-mentioned property of software
quality but also satisfies the nine Weyuker properties.
The software complexity in terms of cognitive
information complexity measure thus has been
established as a well- structured complexity measure.

References:
[1] Halstead, M.H., Elements of Software Science,

Elsevier North, New York, 1977.
[2] IEEE Computer Society : IEEE Standard

Glossary of Software Engineering Terminology,
IEEE Standard 610.12 – 1990, IEEE.

[3] Kushwaha,D.S and Misra,A.K., “A Modified
Cognitive Information Complexity Measure of
Software”, ACM SIGSOFT Software
Engineering Notes, Vol. 31, No. 1 January 2006.

[4] McCabe, T.H., A Complexity Measure, IEEE

Transaction on Software Engineering, SE – 2,6,
pp. 308 – 320, 1976

[5] Misra,S and Misra,A.K., Evaluating Cognitive
Complexity measure with Weyuker Properties,
Proceeding of the3 rd IEEE International
Conference on Cognitive Informatics(ICCI’04)

[6] Tuomas Klemola and Juergen Rilling, A
Cognitive Complexity Metric Based on Category
Learning, IEEE International Conference on
Cognitive Informatics, 2003.

[7] Weyuker, E., Evaluating software complexity
measure. IEEE Transaction on Software
Engineering Vol. 14(9): 1357-1365,
september1988.

[8] Wang, Y., The Real-Time Process Algebra
(RTPA), Annals of Software Engineering: An
International Journal, Vol. 14, USA, 2002,
pp. 235 - 274.

[9] Wang,Y., On Cognitive Informatics, Keynote
Lecture, Proceedings of IEEE International
Conference on Cognitive

 Informatics, 2002, pp. 34 - 42
[10] Wang, Y., and Shao, J., Measurement Of The

Cognitive Functional Complexity of Software,
IEEE International Conference on
Cognitive Informatics, 2003.

[11] Wang,Y., On The Cognitive Informatics
Foundations of Software Engineering, IEEE
International Conference on Cognitive
Informatics, 2004.

[12] Wang,Y., On The Informatics Laws of Software,
IEEE International Conference on Cognitive
Informatics, 2004.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp187-195)

Appendix I

/*Calculate the sum of first n integer*/
main() {
int i, n, sum=0;
printf("enter the number"); //BCS1
scanf("%d" , &n);
for (i=1;i<=n;i++) //BCS2
sum=sum+i;
printf("the sum is %d" ,sumssss);
getch();}

Fig. 1 : Source code of the sum of first n integers.

main()
{
int b;
int sum = 0;
Printf(“Enter the Number”);
Scanf(“%d”, &n);
Sum = (b+1)*b/2;
Printf(“The sum is %d”,sum);
getch();
}

Fig. 2 : Source code to calculate sum of first n integers.

define N 10
main()
{
int count
float, sum,average,number;
sum = count =0;
while (count < N)
{
scanf (“ %f”,& number);
sum = sum+ number;
count = count+1;
}
average = sum / N;
printf (“Average =%f”,average);
}

Fig. 3 : Source code to calculate the average of a set of
N numbers.

#include< stdio.h >
#include< stdlib.h >
int main() {
long fact(int n);
int isprime(int n);
int n;

long int temp;
clrscr();
printf("\n input the number"); //BCS11
scanf("%d",&n);
temp=fact(n); //BCS12
{printf("\n is prime");}
int flag1=isprime(n); //BCS13
if (flag1= =1) //BCS14
else
{printf("\n is not prime")};
printf("\n factorial(n)=%d",temp);
getch();
long fact(int n) {
long int facto=1; //BCS21
if (n= =0) //BCS22
facto=1;else
facto=n*fact(n-1);
return(facto); }
int isprime(int n)
{ int flag; //BCS31
if (n= =2)
flag=1; //BCS32
else
for (int i=2;i<n;i++) //BCS33
{ if (n%i= =0) //BCS34
{ flag=0; Therefore Wc = 3

break; }
else {
flag=1 ;}}
return (flag);}}

Fig. 4: Source code to check prime number and to
calculate factorial of the number

#include< stdio.h >
#include< stdlib.h >
#include< conio.h >
int main() { //BCS1
int flag = 1,n;
clrscr();
printf("\ n enter the number");
scanf("%d",&n);
if (n= =2)
flag=1; //BCS21
else
{for (int i=2;i<n;i++) //BCS22
if (n%i= =0) //BCS23
{ flag=0;

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp187-195)

break;}
else{
flag=1;
continue;} }
if(flag) //BCS3
printf("the number is prime");
else
printf("the number is not prime");
grtch();}
Fig.5 : Source code for checking prime number

#include< stdio.h >
#include< stdlib.h >
#include< conio.h >
int main () {
long int fact=1;
int n;
clrscr();
printf("\ input the number"); //BCS1
scanf("%d",&n);
if (n==0) //BCS21
else
for(int i=n;i>1;i--) //BCS22
fact=fact*i;
printf("\n factorial(n)=%1d",fact);
getch();}

Fig.6 : Source code for calculating factorial of a number

Int main() {
long fact(int n);
int i, n, sum=0;
printf("enter the number");
scanf("%d" , &n);
temp = fact(n);
for (i=1;i<=n;i++)
sum=sum+i;
printf("the sum is %d" ,sum);
getch();
long fact(int n){
long int facto = 1;
if (n == 0)
facto = 1 else
facto = n*fact(n-1);
return(facto);}}

Fig.7: Source code of sum of first n integer and
factorial of n.

main() {
int a,b,result;
result = a/b;
printf(the result is %d”,result);
int i, n, sum=0;

printf("enter the number");
scanf("%d" , &n);
for (i=1;i<=n;i++)
sum=sum+i;
printf("the sum is %d" ,sum);
getch();}

Fig. 8 : Source code of division and the sum of first n
integers.

int main(){
int n;
long int temp;
clrscr();
printf(“\n input the number”);
scanf(“%d”,&n);
temp = fact(n);
{printf(“\ is prime”);}
int flag1 = isprime(n);
if (flag1 == 1)
else
{printf(“\n is not prime)};
printf(“\n factorial(n) = %d”,temp);
getch();}

Fig.9 : Source code of main program body of program
in Fig.4

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp187-195)

