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Abstract: Dielectrically loaded antennas meet growing interest in wireless and satellite 
communication due to small dimensions, controllable properties and perfect protection from damages 
even in the case of explosions. Real construction can be computed using time domain finite difference 
methods, but those methods meet big difficulties in dynamic problems. The generalized eigenfunction 
method applied earlier to diffraction problems and in laser theory can help to find within the reasonably 
limited amount of calculation not only static but dynamic characteristics of antennas. The importance 
of the dynamic analysis is easily seen from the presented figures, which show big changes in antenna 
parameters in the case of transmission (or reception) of short pulses. For high bit rate communication 
systems the detailed analysis of such changes is of vital importance. 
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1. INTRODUCTION 
The generalized eigenfunction method was 

developed for diffraction problems [1]. The 
possibility of its application for laser theory was 
reported in [2] and [3]. It was proposed in [4] to use 
this method for the antenna design. One of its 
possible applications is the design and analysis of 
dielectrically loaded antennas. This type of 
antennas meets growing interest due to small 
dimensions, controllable properties and perfect 
protection from damages even in the case of 
explosions. Real construction can be computed 
using time domain finite difference methods, or 
frequency methods like entire domain Galerkin 
technique. Being difficult enough in principle, 
those methods meet additional difficulties in 
dynamic problems. Practically always the 
consideration is limited by stationary cases. We 
reported earlier the preliminary results of the 
dynamic analysis for the pattern of dielectric 
antennas [4]. Within the generalized eigenfunction 
method we have developed the technique of 
calculation for dynamic cases. Without big 
difficulties of the time domain methods this 
technique helps to analyze the 
dynamic behavior of the antenna parameters. 
 
 
 

GENERALIZED EIGENFUNCTION 
METHOD 

The idea of the generalized eigenfunction 
method can be explained on the example of the ε-
method [1]. We begin with a simple scalar problem 
of dielectrics in a closed resonator  with ideal walls. 
Find a function u, which satisfies in side the 
volume v+ the equation 
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and the boundary conditions on the dielectric 
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and on  the external boundary 
0=Su  

We’ll seek the solution of the problem as a series 
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where un are the eigenvalues of the following 
auxiliary problem 
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Eigenvalues of the homogeneous problem are εn . 
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The eigenfunctions un is orthogonal in the sense of 
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This can be easily shown [1], using Green’s 
formula 
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and the boundary conditions (3). 
Each term in the series (2) satisfies the equation (1) 
in v- .If we want the series to satisfy (1) in v+ we 
must substitute it in (1) and find A n. 

∑ =+−

++∇

fukkA

uku

nnn )( 22

0
2

0
2

εε

ε
 

but    
,0

2
0

2 fuku =+∇  
hence 

∑

∑

−=−

−=−

n
nnn

n
nnn

uuA

ukuAk

;)1()(

;)1()(

0

0
22

εεε

εεε

  (4) 

Multiplying (4) by um, we integrate over v+ and use 
the orthogonality of um, and un. Then 
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To express A n directly trough f, one can use the  
expression 
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which can be obtained from obvious equations 
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again with the aid of Green’s theorem and the 
boundary conditions [1]. 
From (6) follows 
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Both formulas (5) and (8) give us the formal 
solution of the problem.  
In the  ε –  method the field outside the body can 
not be represented as a series in terms  of un as in 
this region the system of eigenfunctions un is not 
complete. We must add u0 to the series. Inside the 
body v+ it is possible to represent u as 
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where Bn obviously can be expressed trough An .  
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that is in v+                                              (9) 

 ∑=
n

nnuBu  

∫
∫

+
−

=
v n

v n

n
n

dvu

fdvu

k
B

22 ]
)1(

1
ε

 

Resonance frequencies may be defined from the 
equation 

ckkn
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The homogeneous problem (3) does not include the 
dielectrical permittivity of the body ε . It means that 
if ε is, for example, complex(losses or gain in 
dielectrics), the solution of the homogeneous 
problem is not complicated and its eigenvalues ε n 
is real . 
If the resonator has some losses, not connected with 
the complex ε, than ε n become complex. But even 
in this case there exists only the discrete set of 
eigenvalues ε n . They correspond to various types 
of oscillations at given frequency, which 
compensate the external losses by the energy 
generated in the active dielectrics. 
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DYNAMIC PROBLEM 
We can not use (9) directly in the dynamic theory, 
as it represents the solution of a stationary problem 
while we have to solve a nonstationary problem. 
We can consider the equation (1) 
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The boundary conditions may be considered 
similarly. Then to find the solution of (10) is 
possible using the inverse Fourier transform of the 
solution 
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with Bn defined by (9). We’ll limit our 
consideration with the case of narrow band 
processes )exp()()( titFtf ω= , where f(t)- an 
analytical signal, F(t)– a slowly varying function 
of time, ω –a frequency, close to one of the 
frequencies, satisfying the equation 
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In this case the spectrum F(ω) of the F(t) will be 
narrow. 
Then the spectrum u must be narrow as well and 
we will use that. In the Fourier transform 
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un(k) is a slowly varying function of k, so the 
integral can be represented approximately as 
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if the spectrum of  Bn has a sharp peak at Ω = ω, 
where ω is one of the resonant frequencies from 
(11). Bn (t) is defined as the inverse Fourier 
transform of (9). For the simplicity let the sources 
of excitation f in (9) are limited by the volume v+. 
Then (9) becomes 
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where Un  – the normalized function un with 
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as a function of ω or k has the only singularity at  ε 
–  ε n (k) = 0. We denote this meaning of ω as ω p In 
the complex plane this singularity is a simple pole 
and the function has no singularities at all and is a 
slowly varying function of k: 
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where F- a slowly varying function of time, 
mentioned before in (11). From the other side, the 
left part of (12) may be transformed to 
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Finally, the equation for  Bn  is as follows 
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If B n is constant, then d B n /dt  =0  and we come 
back to (9). 
 
 
 APLICATION TO THE CASE OF A 
LONG CYLINDRICAL ANTENNA  

To illustrate the application of the generalized 
eigenfunction method we consider the case of a 
long cylindrical dielectric antenna with the 
excitation from a long and thin metal rod inside the 
dielectric. The stationary case is not very 
interesting, as the eigenfunctions are well known - 
they are Bessel functions inside and Hankel 
functions outside the dielectric [1]. Dynamic 
problem is more complicated but very important. It 
is known from the theory of resonators that the 
stationary mode of oscillation requires some time 
for its stabilization inside the dielectrics [2]. This 
time even for small antennas is several 
nanoseconds. It becomes very important if we 
come to communication with the information 
transmission rate gigabits per second, as in this case 
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the radiation is switched on and off every 
nanosecond and neither antenna pattern nor the 
input impedance   have enough time for 
stabilization.    The dynamic analysis using 
traditional methods is time consuming because of 
the integration over radioactive modes. The 
generalized eigenfunction method helps to simplify 
the numerical analysis due to the discrete character 
of the spectrum of eigenvalues [1]. For the 
calculations the rectangular pulse excitation was 
considered with variable duration of pulses and 
intervals between them. Our aim was to understand 
how the antenna pattern behaves in the first 
moments after the pulse excites the metal rod inside 
the dielectric. Obviously the stable mode of 
oscillation requires some time for coming to a 
stationary case. We can estimate this time as a time 
of the pulse propagation through the dielectric 
multiplied by some integer, but we do not know 
how many passes through the resonator are 
necessary for the mode stabilization. It is especially 
interesting to see the form of the antenna pattern in 
dynamics and the dynamic behavior of the antenna 
impedance. To solve these problems the 
coefficients in front of the various eigenfunctions 
were found numerically from (14). Dominant terms 
were taken into consideration first, than other 
eigenfunctions were included and the convergence 
of the series was estimated. 

 
 

EIGENVALUES AND EIGENFUNCTIONS  
PROBLEM 
To find the eigenvalues and corresponding 
eigenfinctions for the case of a long dielectric 
cylinder, a standard separation of variables was 
used  so the functions were chosen as Bessel 
functions inside the dielectric 
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and Hankel functions outside the dielectric. 
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k=ω/c is a real wave number corresponding to the 
frequency of the source, as in the ε- method 
eigenvalues are the resonant values of the dielectric 
permittivity, not  of the frequency.  
Complex eigenvalues  ε n were found from the 
condition at the boundary  r=a of the dielectric 
[1,4]   
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Of course, for this simple problem the 
abovementioned conditions are well known, and 
the exact eigenvalues and eigenfunctions can be 
easily found. For more complicated cases this part 
of the problem can be the most difficult one. 
 The approximate eigenvalues and eigenfunction 
can be calculated through variation of the 
functional [1] 
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Functions u, corresponding to a stationary value of 
the functional are the eigenfunctions, and the value 
of the functional ε(u) gives the eigenvalue. The 
functional can be analyzed by the  Ritz method in 
the first approximation resulting in the set of 
approximate eigenvalues   εn and corresponding 
approximate eigenfunctions as combinations of  
cylindrical waves. 
 
APPLICATION TO THE CASE OF 
A SHORT CYLINDRICAL 
ANTENNA  

 The method developed in the previous sections 
was applied for the analysis of a cylindrical 
dielectric antenna with limited length. The problem 
becomes a three dimensional one and cannot be 
solved strictly analytically. Numerical methods like 
Ritz or Galerkin techniques meet difficulties 
connected with the continuous spectrum of 
radiating modes. Generalized eigenfunction method 
can help to simplify calculations due to the discrete 
spectrum of the modes. 
 In this section we present  an application of the 
above mentioned method to a numerical calculation 
of the dynamic behavior of a short dielectric 
antenna. We consider a vertical dielectric cylinder 
with radius b and height d . A metal rod  is placed 
along the central axis of the cylinder with the 
dielectric permittivity ε. The cylinder is placed on a 
horizontal conductive plane. Considering the 
dielectric resonator as a radial waveguide and the 
metal rod as a source of excitation we can come to 
a scalar wave potential problem [1,6].  For a 
dielectric with a high dielectric permittivity we can 
consider eigenfunctions propagating close to the 
radial direction as dominant ones [1]. The full 
problem was solved numerically in three steps. 
First approximate eigenvalues were found using the 
Ritz method from (18), then eigenfunctions were 
defined using boundary conditions. Next the entire 
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domain Galerkin technique [5,6] was used for 
numerical calculation of the field at the boundary 
of the dielectric. Finally the fields in the far zone 
were defined using Kerchief integral.  
   Standard boundary conditions- continuity of 
tangentional field components are satisfied on the 
periphery and on the upper face of the cylinder. 
Radiation conditions are supposed in the infinity, 
and  the fields are limited on the axis of the 
cylinder. This standard set of boundary conditions 
is described in multiple books and papers (see, for 
example, [1,3,4,5,6] It is shown in [6] that because 
of the axial symmetry  electromagnetic fields can 
be described in terms of a single scalar TM-type 
wave potential u, with the magnetic field H 
expressed through u in the form  
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where we accept standard cylindrical coordinate’s 
r, z and φ, and standard definitions 
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and ε is the dielectric permittivity, which is equal to 
1 outside the dielectric and more than 1 inside it.   
The wave potential satisfy the wave equation 
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at r > 0 ,  
 Again ε =1 outside the dielectric and ε >1 inside it, 
and. k is the free space wave number (k=ω/c ),  ω is 
the angular frequency of excitation, c is the velocity 
of light in vacuum. Eigenfunctions have the form 
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where J and H are Bessel and Hankel functions, 
the constants of normalization C1,2,3,4 can be 
found in[6], and index q is a aggregation of 
radial index n and angular indices m and i 
[1]The set of eigenfunction is received 
incorporating all the boundary conditions, and 
the eigenvalues εn are found together with the 
parameters q,p,n from the system of equations  
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In details  eigenfunctions (21) and boundary 
conditions (22) are discussed in [3,4,5,6]. The 
wave potential and electromagnetic fields on 
the surface of the dielectric antenna are then 
presented in the form of a series in terms of 
eigenfunctions uq.  
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Coefficients  Bq. of the series are found from 
the differential equations [2,3,4] 
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Where integration is made over dielectric 
volume only, f is the source function, ωq is the 
angular frequency (complex), which satisfies 
the equation  eq (ω)- e=0. The full solution for 
the field on the dielectric surface was found 
numerically in the form of a series in term of 
basis functions using the entire domain 
Galerkin technique [6]. Then the fields in the 
wave zone are found using Kerchief integral 
over the surface of the dielectric (this method is 
used to find the antenna pattern in vertical 
plane. Antenna pattern in horizontal plane was 
found as a sum of the series in terms of 
eigenfunctions..For simplicity we consider the 
distribution of the excitation functions as a 
given distribution. 

 
 

RESULTS OF NUMERICAL 
CALCULATIONS  

The dynamic behavior of a short cylindrical 
dielectrically loaded antenna was analyzed 
numerically using the generalized eigenfunction 
method described above and in [1,2,3,4]. The 
following parameters were chosen. Dielectrical 
vertical cylinder has the radius b=1cm, height 
d=1cm (0<z<d), it placed on a horizontal 
conductive plane z=0. Dielectric permittivity ε =9. 
A metal rod inserted along the vertical axis of the 
cylinder  The frequency of excitation 10 GHz 
(k=ω/c=200π/3). Distribution of current along the 
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rod is considered as a given function (uniform or 
sinusoidal). A horizontal shift of the rod  ds is 
introduced to analyze its role in the transient 
period. For the antenna pattern in a vertical plane 
the distribution of the fields on the cylinder 
surfaces as a function of time after a step excitation 
was calculated in the form of a series in terms of 
eigenfunction and then the pattern was estimated 
using Kirhoff’s principle for radioactive apertures. 
For the dynamic antenna pattern in the horizontal 
plane  the fields outside dielectric were presented in 
terms of eigenfunctions .(we suppose that the 
source is inside the dielectric). The results are 
shown in the figures.  
   Fig.1 shows the antenna pattern in horizontal 
plane for t=0.1 ns after the step excitation if the 
metal rod is placed on the dielectric cylinder axis. 
Fig.2 shows the amplitude of that antenna pattern 
as a function of time. Fig. 3 presents the antenna 
pattern in horizontal plane for t=0.1 ns if the metal 
rod is shifted 1mm from the axis. Fig. 4 
corresponds to the time t=1 ns for the same shift. 
Figures 5 and 6 present the antenna pattern in 
vertical plane for the same case as in Figures 3 and 
4. Fig 5 corresponds 
to t=0.1 ns and Fig.6 –to t=1 ns 
 
       Without the horizontal shift (symmetrical 
excitation) horizontal antenna pattern is always 
symmetrical. Nevertheless, its amplitude shows 
oscillations up to the time about 10-15 passes of the 
reflected radiation through the dielectric. This time 
should be considered as a transient period, when 
the operation is not  a steady-state one.  A 
horizontal shift of the rod causes heavy 
deformations of the antenna pattern in the transient 
period. After the end of this period the pattern 
comes close to the symmetrical one.  Changes of 
the antenna pattern in the vertical plane are not so 
dangerous for the  operation of the antenna with the 
given configuration . 
  

 
CONCLUSION   

The results show the importance of the 
dynamic analysis  both for antenna pattern and for 
the input impedance. An antenna  working with a 
very high rate of information can be in the unstable 
operation for the time compared with the 
transmitted pulse duration. It can  affect negatively 
the whole transmitting system.  According to the 
reciprocity principle all the receiving antennas meet 

the same problems.  The method presented in the 
paper is simple and universal. The generalized 
eigenfunction method can be applied to the 
dynamic analysis of any antenna , resonator, 
aperture, laser cavity or other radiating system. It 
helps to see clearly the configuration of the radiated 
field in space as a function of time. Using 
reasonably short calculations you can define the 
maximum possible rate of information which can 
be transmitted by your system through radiation 
without distortion. It becomes especially important 
if the information rate is so high that the frequency 
of radiation reaches the level where the dimensions 
of the radiator are more than the wavelength. For 
communication  at 10 Mbit/s and higher 
instabilities in radiation pattern can be critical for 
the system operation, which makes the application 
of the dynamic analysis very important. 
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