
Adaptive Rate Control (ARC) with Erlangian Traffics over
Resilient Packet Ring (RPR) Network

SURASEE PRAHMKAEW AND CHANINTORN JITTAWIRIYANUKOON

Department of Telecommunications Science

Faculty of Science and Technology
Assumption University, Bangkok 10240, Thailand

Abstract: - In this paper an Adaptive Rate Control (ARC) with Erlangian traffics in Resilient Packet Ring (RPR)
network has been proposed. First, the RPR network will be introduced then the necessity of Erlangian distribution
for traffic will be discussed. The traffic flow prior to the entrance of RPR network will be controlled by the
window size adjustment in the ARC algorithm. The algorithm per se introduces the basic regulation of appropriate
window upsize or downsize. Input traffic rate, packets drop, preset size of the window and RTT are taken into
account by the ARC algorithm. Simulations are employed to investigate how input Erlangian traffic rate or other
parameters mentioned above affect the performance. Results before and after applying ARC are compared. In
addition simulations show how the performance can be improved by the ARC algorithm. By varying Erlang
means, the results indicate the improvement.

Keywords: - Erlangian input traffic, ARC, window flow control, RPR network, simulation.

1. Introduction
 A simulation will provide solutions to any
sophisticate models if and only if all input
parameters and modeling technique are precise. This
will give rise to robust qualitative behavior of the
analytical model representing those complex
systems. In other words, simulation can create exact
solutions but, however, takes more time and requires
prudence. The paper is organized as follows. We
begin by giving an overview of the practical arrival
process, which is the Erlangian traffics in Resilient
Packet Ring (RPR) network in section II. The
Adaptive Rate Control (ARC) algorithm will be
presented in section III. Simulation will be briefly
discussed in section IV. Section V will demonstrate
results and analysis and finally conclusion and future
works will be summarized in section VI.
2. The Erlangian Traffics in RPR

network
The concept of high speed dual ring networks

has been introduced since the 1990s. Some of the
proposed dual ring networks include Metaring [9],
CRMA-II [7], ATMR [5], and FULL [6]. Practical
dual ring network products were later developed by
CISCO using the Spatial Reuse Protocol (SRP)

technology [1] and by Nortel using the OPTera
Packet Edge technology[12]. These two products
were competing for the adoption of their own
proprietary implementation of dual ring networks.
However, eventually both companies realized that is
was mutually more beneficial to users to have only
one common accepted standard instead and so the
IEEE 802.17 Working Group [2] was formed to
develop a common dual ring network standard. It can
concluded that the mentioned 2 proprietary standards
(from CISCO and Nortel) much reflect the RPR
standard. Currently this standard [2] has been
approved by the IEEE since 2004, also it is expected
that there will be an amendment in the adoption of
future specification of RPR networks. Figure 1
shows the RPR node architecture. Note that the
Ingress queues represent the entrance of Erlangian
traffics to the RPR network while the Transit queues
will keep all packets transiting the RPR node as the
fluctuation of Ingress traffic has arose. In the paper
we allow Ingress queue to transmit an Ingress packet
first although another packet arrives from the Transit
channel. As the RPR node finishes transmitting the
Ingress packet, the Transit packet will be stored in
the Transit queue.

 1

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp108-113)

mailto:pct2526@gmail.com

Transit
Input

MAC Client

MAC Control
Control Queue

1 2 N

1

1 N

N

Ingress
Queue

Transit Queue

ARC
Output

Nonconforming Packet
Figure 1. RPR node architecture.

3. Adaptive Rate Control (ARC)

Algorithm
In the section ARC will be discussed. The

algorithm will not consume much time to calculate
for the adjustment. Although an application for a fast
routing network is concerned, it is guaranteed that
ARC would not cause any burden to the IP network
as such [8]. Key idea of window size adjustment
(upsize or downsize) is to find a criterion, which is
well-fit to the expected value of system output.
Another method called sliding window as part of the
flow control algorithm can be found in [4].
Fundamental input parameters to the system are then
opted for window size computation. These
parameters can be number of packet drop, estimated
RTT (Round Trip Time) delay, window size in the
previous interval of time and the basic arrival rate of
input traffic.
 The idea of this ARC algorithm somehow works
like an ON/OFF control valve for all arrival traffics.
In the beginning, traffic arrives in front of ON/OFF
valve with no competitor (assuming that it is an
preemptive condition, that is, no initial packet drop
found or no initial packets found at time t=0) then
the valve is ON allowing this traffic goes through by
presetting the flow rate of the valve to be moderate.
The flow rate of the valve remains unchanged until
whenever the packet drop hits the unacceptable
records. This may be caused by a fluctuation of input
traffic. If the fluctuation of the traffic reaches then all

dropped packets will be held and kept in a storing
room until retransmission occurs. The packet drop
soon will be taken into account for the flow rate re-
calculation by the ARC algorithm. The result may
simply improve the transmission by adjusting the ON
valve to higher rate of flow. The action takes step by
step regarding to the impact of result from the
calculation. The adjustment takes no longer action if
it is highest rate possible. That means it is now
reaching the maximum size of the window flow
control (max_winsize). Although max_winsize is set,
somehow the fluctuation of traffic may continue,
assuming that packet drops now are beyond the
capacity of the storing room then the counting for
packet drop (non-conforming frame) starts from this
point of time onwards. As the fluctuation of input
traffic may change to fewer, the ON valve will
release the contention by adjusting to new lower rate
of the flow. It is apparent the window size (ON/OFF
control valve) will shrink (downsize) or expand
(upsize) back and forth several times during the
functioning of the ARC algorithm. The window size
is ranging between min_winsize up to max_winsize.
While min_winsize in our ARC algorthm is set to
one, max_winsize will reflect the channel capacity
(bandwidth) of RPR network per se. By well-
adjusting the window size in ARC algorithm, it will
be able to reduce packet drop compared vis-à-vis
non-ARC application. That will be directly beneficial
to the quality of service (QoS). For example, if the
arrival Erlang traffic rate (λa) as an input rate is
lower than the packet drop rate (λp) then ARC will
set the window size to be min_size (=1) initially. The
application of ARC in the system is illustrated in
figure 2 where the algorithm is shown in figure 3.

 ARC ERLANG
Traffic λa

Packet
Drop λp Non- conforming

Figure 2. Flow control with ARC function.

 2

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp108-113)

4. Simulation /*********** ARC Algorithm ************/

Simulation model in the experiment can be shown in
figure 4. From this figure it is clearly seen that the
input traffic (both from Ingress and Transit channels)
rate will vary between 622 Mbps and 2.4 Gbps. In
case of ARC, all traffics will be handled immediately
by ARC algorithm before releasing them to the RPR
node. In case of no ARC, traffics will proceed
straightforward to the RPR node.

PROCEDURE
/****** Window Size Calculation ******/

 Current allocation rate (Ai) ;
 Current win_size (Wi) ;
 Bandwidth (BW) ;
DO WHILE Transmission is Ongoing ;
 {

 IF Packet Drop λp ≥ Ai THEN {

OutputARC RPR
Node

Ingress Traffic 1
Ingress Traffic 2
Ingress Traffic 3

Ingress Traffic N-1
Ingress Traffic N

Transit Traffic

155.55 Mbps
622 Mbps
1.2 Gbps

2.4 Gbps
622 Mbps

 Calculate new allocation rate (An) ;
 Calculate new win_size (Wn) ;
 Ai <= An ;
 Wi <= Wn ; }
 ELSE {
 Ai <= ABW ;

 Wi <= Wn ; }
 } END_DO ;
/*** Calculate new allocation rate (An) ***/
An <= BW * frame_size/(λp)1/2 ; Figure 4. Simulation model.
/*** Calculate current win_ size (Wn) ***/
IF Packet Drop exists THEN
{ 4.1 Input Traffic
 Wn <= Wn ++ ;
 IF Wn > Win_max THEN Wn <= Win_max ; The input traffic can be categorized into data, voice,

video, image and graphics [3]. This paper will focus
on three categories, mainly data, voice and video.
Voice sources are generally burst type in practice
while data and video sources are either continuous or
burst type, depending on the compression and coding
techniques used. We also found that the exponential
distribution was not always an appropriate candidate
for representing the practical situation with regard to
service times and interarrival times. It is obviously
observed that to allow a more general service
distribution (such as Erlangian distribution) would
have destroyed the Markovian property and then It

}
ELSE {
Wn <= Wn − −;
 IF Wn ≤ 0 THEN Wn = 1 ; }

/*** Calculate available BW (ABW) ***/
ABW <= Max_BW – Used_BW;

 /******* END OF ARC Algorithm *******/

 Figure 3. ARC Algorithm.

 3

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp108-113)

will be much more complicate than the Markovian
distribution. However what we can find the solution
for Erlangian distribution is to decompose both
service time distribution and interarrival time
distribution into a collection of structured
exponential distributions.

4.2 The Queue En/En/1 Model

Here the system with the Erlangian distribution (n
stages) arrival process and the Erlangian distribution
(n stages) service time is considered. The roles of
interarrival time are different from those of the
previous publications [10]. The En/En/1 model
operates as whenever an arrival has just occurred,
then one immediately introduces a new arrival into
an n-stage Erlangian facility. When the arrival is
generated from source he must then pass through n
exponential stages each with parameter nλ. It is clear
that the probability density function (pdf) of the time
spent in the arriving facility will be given by
equation 1.

)!1(
)()(

1

−
=

−−

n
etnntA

tnn λλλ
 t≥0 (1)

It is also possible to specify the number of n stages
remaining in the service facility for each job in
service, it behooves us to represent each job in the
queue prior to the service, as possessing n stages of
service. Then service times will be given by equation
2.

)!1(
)(

1

−
=

−−

n
exxg

xnn µµ x≥0 (2)

5. Results and Analysis

In this section, we use simulations [11] to study the
performance of RPR. All simulation results are
obtained with our publicly available EZSIM
implementation of RPR. We consider 622 Mbps
links (OC-12), 200 KB buffer size, 1 kByte packet

size, and 0.1 msec link propagation delay between
each pair of RPR nodes [13]. Input Erlangian traffic
rates are ranging between 622 Mbps and 2.4 Gbps
(which is apparently over capacity of the optical link
OC-12) in order to prove the benefit of ARC
algorithm. Erlangian distribution stage 2 is employed
throughout the experiments. The comparisons
between before and after applying ARC algorithm
are shown as follows.

Throughput

0

100

200

300

400

500

Source rate

Nu
m

be
r o

f p
ac

ke
ts

(x
10

00
)

Non_ARC
ARC

Non_ARC 455280 437240 430500 383880
ARC 469960 459000 473580 410440

155 Mbps 622 Mbps 1.2Gbps 2.4Gbps

Figure 5. Throughput.

It is apparent that ARC algorithm will help improve
throughput, which reflects the performance of the
system as shown in figure 5. Particularly at high rate
of congestion (1.2 Gbps-2.4 Gbps), ARC will
outperform compared to non-ARC case. However,
the ARC will have to pay the price for higher mean
queue length (MQL) as shown in figure 6.
Max_MQL for ARC is about 2 packets while non-
ARC can accommodate only 0.5 packets. Although it
is a matter of four times higher but the quantity of
two shows insignificant to buffer requirement. Also
ARC implementer has to be aware of the higher
utilization factor at RPR node. This is due to higher
fluctuation of traffics from source managed by ARC.
However, the increment of utilization factor is only
about 6 % in order to gain higher throughput. The

 4

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp108-113)

result graph of utilization factor is shown in figure 7.
The interesting result is that the ARC can help Drop packets

0
10
20
30
40
50
60
70

Source rate

Nu
m

be
r o

f p
ac

ke
ts

 (x
10

00
) Non_ARC

ARC

Non_ARC 41560 34260 57300 33700
ARC 26560 11320 24860 5220

155 Mbps 622 Mbps 1.2Gbps 2.4Gbps

Mean queue length

0

0.5

1

1.5

2

2.5

Source rate

Nu
m

be
r o

f p
ac

ke
ts

 Non_ARC
ARC

Non_ARC 0.39 0.31 0.34 0.23
ARC 1.94 1.26 1.46 0.66

155 Mbps 622 Mbps 1.2Gbps 2.4Gbps

 Figure 8. Number of packets drop.

reduce number of packets drop more than half. It is
clearly seen that ARC will help reduce 50% of the
packets drop at all input traffic rates as shown in
figure 8.To ease the problem of packets drop will
help boost the system performance in return.

Figure 6. Mean queue length.

Utilization

0

0.2

0.4

0.6

0.8

1

1.2

Source rate

Pe
rc

en
ta

ge
 (x

10
0%

)

Non_ARC
ARC

Non_ARC 0.97 0.93 0.92 0.81
ARC 1 0.98 0.98 0.87

155 Mbps 622 Mbps 1.2Gbps 2.4Gbps

6.Conclusion and Future Works

ARC will outperform especially in case of
congestion (as the input arrival rate of the traffic 1.2
Gbps – 2.4 Gbps is much higher than RPR link
capacity, 622 Mbps). Simulations confirm that ARC
will improve the performance compared to non-ARC
one. It does not have to be either costly or
complicated but simply adjusts the suitable window
size regarding to the rate of input traffic and the
packets drop. On the other hand, ARC also gives
better performance compared to non-ARC in the case
of non-congestion (at 155Mbps). There are many
variations and the number of features available keeps
asking about our future works. Predictably we have
argued against this, so we would conduct some
experiments on the expansion of maximum window
size. Different link capacities of RPR nodes and
ARC extra-ordinary processing time will be further
investigated. Also we plan to apply ARC scheme to

Figure 7. Utilization.

 5

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp108-113)

 6

the extent of low-speed wireless communication. To
experiment the case with wider size of the windows
we need a lot more modifications than the current
simulation. In fact we are on that boundary then our
experiences tell it will be hard pressed to provide a
decent running platform for our future works. Last
but not least an approximation approach will also be
another further step of the research.

7.References

[1] D. Tsiang and G. Suwala, The CISCO SRP
MAC Layer Protocol, Internet RFC 2892, 2000.

[2] IEEE 802.17, Standards for Resilient Packet Ring
(RPR) Networks, 2004.

[3] Pitiporn P. et. al, Performance Comparison of
ATM Policy Mechanisms with Telecommunications
Traffic, Proceeding of The 6th World
Multiconference on Systematics, Cybernetics and
Informatics, pp. 373-378, 2002.

[4] Ghanthiya L. et. al, Performance Evaluation
for TCP/IP over Satellite Communication with
Sliding Window Algorithms, Proceedings of the 4th
International Conference on Intelligent Technologies
(InTech’03), pp.17-24, 2003.

[5] C. Bach, Fairness Issues of the ATMR MAC
Protocol in the Gbit/s Range, Proceedings of the
European Conference on Networks and Optical
Communications ’96, ATM Networks and LANs,
IOS Press, pp.30-37, 1996.……………

[6] T. Saito et. al, QoS Guarantees for High Speed
Variable Length Packet LANs, Proceedings of the
IEEE PACRIM Conference on Communications,
Computers and Signal Processing, Victoria, Canada,
vol 2, pp. 770-774, 1997.

[7] C. Bach and A. Grebe, Performance
Comparison of Media Access Protocols in the
Gigabit/sec Range, 5th IFIP Conference on High
Performance Networking, HPN’94, Grenoble,pp.47-
61, 1994.

[8] V. Srinivasan and G. Varghese, Faster IP
Lookups using Controlled Prefix Expansion, Proc.
ACM SIGCOMM, pp. 1-10, 1998.

[9] I. Cidon, L. Georgiadis, R. Guerin and Y. Shavit,
Improved Fairness Algorithms for Rings with Spatial
Reuse, ACM Transactions on Networking,Vol. 5,
No. 2, pp.190-204,1997.

[10] S. Prahmkaew et. al, "A Study of Adaptive
Rate Algorithm in ATM Network Flow Control,"
Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’04),pp.668-673, 2004.

[11] B. Khoshnevis, Discrete Systems Simulations,
McGraw-Hill, 1994.
.
[12] OPTera Packet Edge System General
Specification, vol 1, 2000.

[13] V. Gambiroza, P. Yuan, L. Balzano, Y. Liu, S.
Sheafor, and E. Knightly, Design, Analysis, and
Implementation of DVSR: A Fair, High Performance
Protocol for Packet Rings, IEEE/ACM Transactions
on Networking, 11(6), December 2003.

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp108-113)

	Faculty of Science and Technology
	
	ELSE {
	IF Wn > Win_max THEN Wn <= Win_max ;
	ELSE {

