
Framework for Evolving Systems

URJASWALA VORA
1
, N. L. SARDA

2

1
Software Engineering and Operating Systems Department

C-DAC, Mumbai (Formerly NCST)
Juhu, Mumbai-400 049.

INDIA
2
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay,
Powai, Mumbai-400 076.

INDIA
1
 http://www.cdacmumbai.in

2
 http://www.cse.iitb.ac.in

Abstract: Most real world software systems evolve over time to meet changing requirements or changing
business rules. Sometimes, old and new requirements have to be simultaneously met, i.e. old and new rules are
needed to exist concurrently. Accommodating more than one rule in the existing entities, leads to the change in
the operational system, which involves risk. The evolution in the system impacts the business rules as well as
the data model of the system. The evolution step incorporating the change in business rule requires changes to
be carried out in the application architecture in terms of addition or modification of process as well as data
components and alterations in the relationships among the components. The evolution problem of coexistence
of business rules can be considered as incremental change to the existing architectural design of the system to
nullify the risk of change to the software. We propose a framework, where temporal aspects of process as well
as data components and concurrent validity of multiple business rules, with multiple versions of the
components can be effectively implemented. The framework supports evolution without disturbing existing
architecture and functionality. This framework is consistent in application to systems irrespective of the design
methodology followed for the same.

Key-Words: - Framework, Evolving System, Software Maintenance, Temporal Validity.

1 Introduction
Software Maintenance is a costly activity. As
identified by Parikh and Zvegintzov [20], software
maintenance consumes 50% of all computer
resources and by Boehm [3] that maintenance costs
can be up to ten times those of an initial
development. The work done by Burd and Munro
[9] claims that the costs of the maintenance
processes are not distributed evenly across all
categories of software maintenance, namely
Perfective maintenance, Corrective maintenance,
Adaptive maintenance and Preventative
maintenance. The study done by Leintz and
Swanson [19] shows that 50% of the total
maintenance costs are accounted for perfective
maintenance, 25% for adaptive maintenance,
whereas only 21% of the total costs are attributed to
corrective maintenance and 4% for preventive
maintenance. Hence we safely can claim that a large
part of maintenance costs account for the changes in

user requirements and changes in user environment,
which include changes in business rules. In today’s
fast moving world as the frequency of evolving of
business rules increases, consequently these
maintenance costs also increase.

In this paper we focus on the software evolution,
which takes place because of the changes in the
business rules. The business rules define functional
requirements of the application. The changes in
business logic of certain activities result in change
in the business rules for the application. The point of
focus in this paper is that the new rule can coexist
with old rule, i.e. the different rules can have
concurrent lifetimes for the same task. Not every
evolution in business rules invalidates the existing
business rules. These multiple rules existing
concurrently for the same activity can be
distinguished by specifying their temporal validities.

So we propose an architecture that can deal with
multiple rules with specific temporal validities

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp145-150)

which are overlapping. At the same time we focus
on the need of keeping the existing application
architecture undisturbed so that impact of change
can practically non-exist as well as maintenance
costs due to evolution in business rules can reduce
to the considerable extent. The framework is to be
developed on top of the application architecture
irrespective of the fact that application architecture
follows which design methodology, e.g. object-
oriented or SSAD. The current related work, which
we discuss in the next section, describes the
techniques, which provide for the adaptations or
evolutions. However, they assume that changes are
disjoint, i.e. change will invalidate earlier rule for
that activity, whereas, it is quite common in the real
world that changes overlap, and also the changed
rules are valid overlapping the temporal validities of
existing business rules defining particular business
activity. This particular need of evolving
applications is not considered among the various
proposals. In most cases, every change in the
application architecture, due to change in the
requirements or requirement of additional
functionality, is to be handled in unique way
depending on the type of change. There is no
generic strategy provided to deal with changes to
application architecture in general.

In this paper, we present a framework which can
be developed on top of the application architecture,
so that any change due to evolution need not affect
the existing application architecture, at the same
time, allows the evolution of the business rule and
also accounts for its temporal validity.

We summarize in section 2 the related work in
the area of evolving and adaptive systems and point
at the differences in the same with respect to our
area of focus. Section 3 defines the evolution at the
architectural design level. Section 4 has the details
of the proposed Framework with the framework
components descriptions and the associations
between them. Section 5 identifies the capabilities
of the Framework. Section 6 concludes the paper by
summarizing the contribution of this paper.

2 Related Work
Our partial survey of the existing literature on
evolving systems has led us to believe that the
existing literature talks about different techniques
and methodologies which can help in adapting the
existing system by changing the existing software
effectively, e.g. Refactoring. But the work

acknowledges that some changes have to be done.
The literature is talking about changing the
architecture if there is any requirement change, but
does not account for the temporal validity there. The
work though about dealing with evolution at the
architectural design level uses the definition of
components specific to particular design
methodology, e.g. objects in object-oriented
methodology, which is not required if the proper
abstractions are defined .

Sarda [15] is the basis for the proposal of the
Framework and we are proposing the architecture
and methodology using the basic framework given
in that paper. The paper presents a framework for an
application management system as an extension to a
temporal database system.

Tokuda and Batory [12] classify architectural
evolution under three different modes, schema
transformations, the design patterns micro-
architectures, and the hot-spot-driven-approach. The
paper views the changes as program
transformations, which can be automated with
object-oriented refactorings. The paper works more
on avoidance of hand coding and evolution at
architectural level, in above- mentioned modes, with
automation done using refactorings.

Foote and Yoder [5], is accounting for system,
which evolves itself at runtime. The paper gives the
concept of Active Object Model providing meta
information about itself so that it can be changed at
runtime. Active object models define the objects,
their states, the events, and the conditions under
which the objects change state.

Dellarocas, Klein and Shrobe [6] propose the
concept of "closing the feedback loop" over the
entire software evolution process to construct a self-
evolving software system. An evolution engine sits
alongside a running application, to monitor its
execution and to decide when and how to evolve it.
Roberts and Johnson [8] talks about patterns, which
can be grouped together and used as a solution, i.e.
as a pattern language, for evolving frameworks The
patterns are defined for object-oriented architectures
only.

Burd and Munro [9] derive a metric whereby the
evolution of software can be studied. The metric can
be used further for the assessment of the
maintainability of code. The selection of a strategy
that offers the best overall evolutionary path
depends on the assessment of maintenance changes
having effect on the comprehensibility of the code.

Cobleigh, Osterweil, Wise and Lerner [10] put
forward the concept of Containment Units for
recognizing environmental changes and dynamically

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp145-150)

reconfiguring software and resource allocations to
adapt to the architectural changes.

Yoder and Johnson [11] describe the
architectural style for systems needing high
flexibility and dynamic runtime configuration. The
Adaptive Object-Models, described by the writers
has a domain model and domain experts external to
the execution of the program can configure rules for
its integrity.

Subramanian and Chung in [17] and [18] detail
the approach called, NFR Framework, in which
software adaptability, as a non-functional
requirement (NFR), is treated as a soft-goal to be
satisfied (i.e., achieved not absolutely but within
acceptable limits). Based on the same approach,
Chung [14] lists architectural design patterns, which
can be used as potential adaptability enhancers in
developing real-time software systems.

Tu and Godfrey [21] present an approach to
studying software evolution of long-lived systems
that have undergone significant architectural
change. The approach provides a query engine and a
web-based visualization and navigation interface to
help software maintainers in understanding the
evolution.

Greenwood et al. [22] recognize the evolutionary
need of active architectures. They define the
evolution process as combination of process of
composition, decomposition and re-composition,
expressed in a process-aware Architecture
Description Language (ADL).

Minskey [16] states the need of architectural
invariants, which have to be set as firewalls between
the architectural divisions done to avoid the attacks
on the architecture by the software maintainers.

Anderson [1] lists some patterns that help in
recording the history of domain objects. The entire
collection of patterns reflects the different changes
of state.

Carlson, Estepp and Fowler [2] present three
patterns showing how to handle objects changing
over time with the transparency to client.

3 Evolution in Architectural Design
Software maintenance is defined in IEEE Standard
1219 [IEEE93] as:

“The modification of a software product after
delivery to correct faults, to improve performance or
other attributes, or to adapt the product to a
modified environment.”

Many times the term evolution is used as
substitute for maintenance. We can define software
evolution as modification to code and associated
documentation due to:

- change in requirements
- need for improvement
- Changes in the business and technology

environment
With this, the one mandatory objective is to modify
the existing software product while preserving its
integrity.

We can represent evolution, E as function on
application architecture, A which gives result as
evolved architecture, N, i.e. E (A) N. Then the
types of evolution step we can represent as :

If evolution is incremental, i.e. addition of the
component(s), then evolution, E is of type :
N A + , where is the incremental change in
the application architecture.

If evolution step is needed due to the change in
the requirement or in the business rule or in the
environment, and hence requires the modification of
the component(s), then evolution, E is of type :-
Decompose (E) E

1

Identify (E
1
) E

2
 where E

2
 is subset of E

1
 needs to

be modified.
Modify (E

2
) E

3

Compose (E
3
+ (E

1
 - E

2
)) N

If evolution step needs the coexisting business
rules to be taken care of, i.e. existing system is valid
but at the same time new business rule need to be
accommodated, then evolution, E is of type :-
Decompose (E) E

1

Identify (E
1
) E

2
 where E

2
 is subset of E1

implementing the business rule which has new rule
for a subset of data and has to coexist with the
existing business rule for an overlapping time
period.
CreateVersion (E

2
) E

21
 (1)

TemporalValidity (E
21

) T (2)
ControlFlowRuleBase (E

21
) R (3)

Compose (E
21

+ E) N (4)
From equations (1) to (4) represent the Proposed
Framework by us.

As stated by Cook et. Al. [23] dealing with the
evolution at the architectural design stage of the
software process is highly desirable, as
measurements of the evolvability of the intended
system can be made very effectively.

4 The Proposed Framework
The framework consists of following components:
1. Temporal Meta-Data (T)
2. Process Controller (C)
3. Rule Base (R)

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp145-150)

4. Archiving Engine (H)
5. Application Architecture (A)
In the Framework, Application Architecture is
application specific component and other
components (Temporal Meta-Data, Process
Controller, Rule Base and Archiving Engine) are
generic components, which are common for any
system. The Framework can be applied to the
systems which are at the ab initio stage of
development.

4.1 Temporal MetaData (T)
The Temporal Meta-Data gives the temporal
validity periods of all the process components and
data components versions in the Application
Architecture and also the temporal validities of
control flow rules from the RuleBase. The process
components we refer here can be of a business
process at higher level of abstraction and a module
or an object at the lower level of abstraction
depending on the design methodology followed.
The temporal validity of any component states that
the particular component has valid lifetime span of
certain ‘FromValidTime’ to ‘ToValidTime’. We can
represent Temporal MetaData as
T = { C, fromTime, toTime} where C is the Process
or Data Component. When a component is created
its toTime = ‘F’ where ‘F’ means ‘Forever’. When
the new version of the component and/or the new
control flow rule is introduced the toTime will be
updated.

4.2 Process Controller (C)
The Process Controller gets request when a business
activity is invoked by the user of the application.
The process controller then searches and selects the
rule from the Rule Base for that particular activity
depending on the activity invoking and the input
data. The rule gives the control flow between
versions of the components that are required to be
executed for the fulfillment of that particular
business activity. The component versions are
validated against the temporal specifications from
the Temporal Meta-Data. Then the correct versions
of the components are executed as per the control
flow rules for the task to be executed.

4.3 Rule Base (R)
The Rule Base is the set of control flow rules
defined for on the versions of components to be
used for a particular business activity and for
particular input parameters. The Rule Base gets the

request from the process controller for the activity
invoked, the control flow path of activities followed
before the particular activity and the set of input
parameters. The rule selected decides the correct
flow of control, between the versions of
components, to be taken.
R = { ControlFlow(Business Activities) }, i.e. set of
rules stating the control flow path among the
versions of components, to be taken to achieve a
particular task.

4.4 Archiving Engine (H)
The Archiving Engine handles archiving of the
Application Architecture component versions and
corresponding control flow rules involving those
versions of components from the Rule Base, as per
the temporal validities defined in the Temporal
MetaData. The archiving of these invalid
components can be further used in the business
analysis of historical data which can support the
queries regarding the evolution of business rules
over certain period.

4.5 Application Architecture (A)
Application architecture is set of components which
can be of type, Data and Process. We are classifying
the components at the highest abstraction but that
too can vary depending on the design methodology,
e.g. object-oriented (OO) systems will have objects
consisting the process and data part together at the
lower level of abstraction (the higher level of
abstraction in OO systems can be achieved by
component diagrams as in UML).

4.6 WorkFlow of The Framework
Application Architecture is designed to have the
components required by the software system to
achieve its business processes. The Rule Base will
have the rules for the control flows among these
components, for all the activities, which are part of
the different business processes. The rule will state
if (IP = {….} and InvokingActivity = A) then
Invoke(B), where IP is the set of input parameters.
The Temporal Meta-Data has the temporal validities
of all the process components, which are part of the
Application Architecture and also of the data
components. The Process Controller will handle the
interface between Application Architecture
components and the Framework.

With the specifications of temporal validities of
the components in Temporal MetaData, the
archiving rules are to be specified for the Archiving

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp145-150)

Engine so that when the particular business rule
becomes invalid the component versions installing
the same, are not part of the Application
Architecture. The control flow rules involving the
component versions to be archived from the Rule
Base, are to be archived as well, so that the
execution environment does not have the load of
invalid component versions and the overhead of
searching through the invalid rules.

When evolution in the business logic takes place
and new business rule is defined for the business
task, which already has one or more valid business
rules defined the Framework supports seamless
evolution of the system. To implement the new
business logic, a version of the component which
implements the business rule which has evolved is
created. As the temporal validities of the versions of
components will be different, i.e. usage period of
existing business rule and that of the new business
rule which came into existence after evolution of the
business logic for the activity, are distinct. This
information is captured in Temporal Meta-Data
Component of the Framework. When evolution
takes place, temporal validities of old versions of
components, participating in the task, are modified
and temporal validities of the new versions of
components are added to Temporal MetaData. The
addition of new versions of components to the
application architecture results into the new rule,
defining the control-flow corresponding to the new
versions of components, which are to be added to
the Rule Base.
Figure one shows the Framework Components
where.

C
on

tro
lF

lo
w

R
ul

e

A
ct

iv
ity

 In
vo

ke
d

Component V
ers

ion to

be E
xecu

ted

Arch
ive

d

Com
po

nen
ts

V
al

id
ity

.

5 Framework Capabilities
Here are the evident capabilities of the proposed
Framework :

The Framework
 handles the software evolution very

effectively without disturbing the existing
application architecture.

 accommodates the concurrent existence of
business rules and/or data model for a
particular business activity provided by the
application software with distinct temporal
specifications.

 maintains temporal specifications of each
and every change in the business rule as
well as data model and is capable of
producing results for different types of
temporal queries which can give answers
like “what has changed and when”. These
types of queries and their results can help in
analyzing the evolution of business
processes of the organization.

 can support the statistical analysis of the
business processes of the organization, by
generating the queries like “what if the
change would had varied in …way”.

6 Conclusion
Software evolution is a costly yet unavoidable
consequence of a successful application. To
accommodate the requirements of today’s fast
changing business world, it is required to adapt the
new business rules without disturbing the existing
working system.

For the requirements of specific kind, where old
and new business rules and data models have to
exist concurrently in the system, the framework
proposed will lead to smooth evolution and will
validate the different business rules according to
their temporal validities.

References:
[1] Anderson, Francis. A Collection of History

Patterns. Collected papers from the PLoP '98
and EuroPLoP '98 Conference, Technical
Report #wucs-98-25, Dept. of Computer
Science, Washington University, September
1998.

[2] Andy Carlson, Sharon Estepp, Martin Fowler:
Temporal Patterns. University Of Washington,
Department Of Computer Science, Technical
Report TR#WUCS-98-25.
http://jerry.cs.uiuc.edu/~plop/plop98/final_sub
missions.

[3] Boehm B.W., The High Cost of Software, in
Horowitz E., Practical Strategies For

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp145-150)

Developing Large Software Systems, Addison
Wesley, 1975.

[4] Brian Foote and Joseph Yoder. Evolution,
Architecture and Metamorphosis. Pattern
Languages of Program Design 2, John M.
Vlissides, James O. Coplien, and Norman L.
Kerth, eds., Addison-Wesley, Reading, MA.,
1996.

[5] Brian Foote and Joseph Yoder. Metadata and
Active Object-Models. Collected papers from
the PLoP '98 and EuroPLoP '98 Conference,
Technical Report #wucs-98-25, Dept. of
Computer Science.

[6] Chrysanthos Dellarocas, Mark Klein and
Howard Shrobe. An Architecture for
Constructing Self-Evolving Software Systems.
In Proceedings of the Third International
Software Architecture Workshop, pages 29–32,
Nov. 1998.

[7] D. L. Parnas. Designing Software for Ease of
Extension and Contraction. IEEE Transactions
on Software Engineering, 5(2): 128-138, March
1979.

[8] Don Roberts and Ralph Johnson. Evolving
Frameworks: A Pattern Language for
Developing Object-Oriented Frameworks.
Pattern Languages of Program Design 3,
Robert Martin, Dirk Riehle, and Frank
Buschmann, eds., Addison-Wesley, Reading,
MA., 1997.

[9] E. Burd and M. Munro. An initial approach
towards measuring and characterizing software
evolution. In Proceedings of WCRE'99, pages
168-174. IEEE Computer Society, 1999.

[10] Jamieson M. Cobleigh, Leon J. Osterweil,
Alexander Wise and Barbara Staudt Lerner.
Containment Units: A Hierarchically
Composable Architecture for Adaptive
Systems. SIGSOFT 2002/FSE-10. Copyright
2002 ACM 1-58113-514-9/02/0011.

[11] Joseph Yoder and Ralph Johnson. The
Adaptive Object Model Architectural Style.
The Proceeding of The Working IEEE/IFIP
Conference on Software Architecture 2002
(WICSA3 '02) World Computer Congress in
Montreal 2002, August 2002.

[12] Lance Tokuda and Don Batory. Automating
Three Modes of Evolution for Object-Oriented
Software Architectures. 5th USENIX
Conference on Object-Oriented Technologies
and Systems (COOTS '99).

[13] Lance Tokuda and Don Batory. Automated
software evolution via design pattern
transformations. In Proceedings of the 3rd

International Symposium on Applied Corporate
Computing, Monterrey, Mexico, 1995

[14] Lawrence Chung. Design Patterns for
Adaptable Real-Time Systems. UKC'01,
August 10-12, Boston, MA.

[15] N. L. Sarda. A Framework for Application
Evolution Management. 10th Australasian
Database Conference ADC'99, University of
Auckland, New Zealand, 1999 (as part of the
Australasian Computer Science Week
(ACSW'99))

[16] Naftaly H. Minskey. Towards Architectural
Invariants of Evolving Systems. Rutgers
University, LCSR, Research Report 1997.
http://citeseer.ist.psu.edu/minsky97towards.htm
l.

[17] Nary Subramanian and Lawrence Chung.
Software Architecture Adaptability : An NFR
Approach. IWPSE 2001. Copyright ACM 2002
158113-508 -4/02/006.

[18] Nary Subramanian and Lawrence Chung. Tool
Support for Engineering Adaptability into
Software Architecture. IWPSE 2002. Copyright
ACM 2002 1-58113-545 -9/02/05.

[19] Leintz B.P., Swanson E.B. Software
Maintenance Management. Addison Wesley,
1980.

[20] Parikh G., Zvegintzov N. Tutorial on Software
Maintenance. IEEE Computer Society Press,
Silver Spring Maryland, 1993.

[21] Qiang Tu and Michael W. Godfrey. An
Integrated Approach for Studying Architectural
Evolution. 10th International Workshop on
Program Comprehension (IWPC'02), 127-136.

[22] R. M. Greenwood , D. Balasubramaniam, S.
Cimpan , N.C. Kirby, K. Mickan, R. Morrison,
F. Oquendo, I. Robertson, W. Seet, R.
Snowdon, B. Warboys, E. Zirintsis. Process
Support for Evolving Active Architectures. 9th
European Workshop on Software Process
Technology, EWSPT 2003, Helsinki, Finland,
2003, pp. 112-127.

[23] Stephen Cook, He Ji, Rachel Harrison:
Dynamic and Static Views of Software
Evolution. ICSM 2001: 592-601.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp145-150)

