
Broadcasting Algorithm of Constant Complexity for
Fully-Switched Clusters

SÁNDOR JUHÁSZ

Department of Automation and Applied Informatics
Budapest University of Technology and Economics

1111 Goldmann Gy. ter 3., Budapest
HUNGARY

Abstract: - Clusters are high performance computation systems, built up out of standard off-the-self workstations
connected with fast, but standard communication devices. This structure allows higher pure processing power and lower
hardware costs compared to other supercomputers. One main disadvantage of clusters is the lower communication
throughput between the processing elements, as standard methods usually provide weaker performance than the much
more expensive special communication devices of supercomputers. Because of this it is very important to take the most
advantage of the existing communication potential in cluster environment. This paper presents a method of enhancing the
performance of the broadcast group communication primitive by using a new algorithm that takes advantage of message
decomposition and asynchronous communication. When used in fully switched cluster environment the new solution
provides a constant execution time independent of the number of participants. Test measurements show that the algorithm
follows well the predicted behavior, and has superior performance, compared to the widely used binomial tree method
used in standard message passing libraries. As broadcasting is a building block of various group communication
primitives, improving its performance may have beneficial effect on several routine of message passing libraries.

Key-Words: - Group Communication, Broadcasting Performance, Fully Switched Clusters, Constant Time Complexity

1 Introduction
Clusters are high performance computational

systems being built up out of standard PCs or
workstations that are connected via high
performance communication networks. Because of
their high computation potential, low hardware
costs, simple fault tolerance and good scalability
clusters play an increasingly important role on the
high performance computer market. As their
standard communication devices usually provide a
lower throughput than the expensive special designs
used in supercomputer environments, in clusters the
performance of the internode communication is a
primary issue. This bottleneck often limits the
performance of this architecture and hinders the
efficient implementation of communication
intensive algorithms.

These facts stimulated significant research effort
on the hardware and software aspects of cluster
communication. Thanks to hardware improvements,
cluster systems can take benefit of new
communication standards (Gigabit Ethernet,
Myrinet, SCI, Quadrics, InfiniBand), providing high
performance (more Gbps) and low latency (< 10 µs).
Clusters systems usually build on a fully-switched
network topology, reducing competition for physical
bandwidth and allowing a collision-free
environment for communication.

The communications performance is limited by
the physical properties of the underlying network,
but previous studies [1][2] concluded that different
software overheads also have a significant impact on
the performance of parallel applications. The
distributed memory programming used in clusters is
usually supported by various message passing
libraries such as PVM or MPI. Due to the different
inefficiencies and overheads at the levels of
application, message passing subsystem, and
operating systems, the physical transfer time itself –
especially in case of smaller messages– is only a
fraction of the total application-level delay.

This paper focuses on improving the
performance on the level of group communication
routines of message passing libraries, where
broadcasting plays an emphasized role, because it is
widely used in itself, and also is a building block of
other communication primitives (all-gather, all-to-
all, all-reduce). This paper presents a method for
enhancing the performance of broadcasting by
software means. We introduce a new algorithm
using message decomposition and asynchronous
communication, which has an execution time
complexity of O(1) achieved before only by the help
of hardware support.

The rest of the paper is organized as follows:
Section 2 introduces and compares the commonly
used methods –both with and without hardware

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp104-109)

support– for implementing the broadcast primitive
in cluster environments. Section 3 details our
symmetric algorithms providing a new approach of
data distribution in fully-switched cluster systems.
Section 4 compares the performance of the classical
tree and the new symmetric algorithm, and verifies
the correspondence of the measured curves and
those performance predicted by the theory. The
paper concludes with summarizing the results and
showing their application possibilities, in Section 5.

2 Common Methods of Broadcasting
Following the recommendations of the MPI

standard [3] most communication subsystems
implement the group communication primitives
based on the point-to-point transfer functions.
Although this technique might not be the most
efficient way, it certainly allows a fast and portable
implementation of the group primitives. The
efficiency of the different implementations is
strongly influenced by the topology of the
underlying connection network. As today the virtual
crossbar (fully switched) topology is the overall
dominant way of connecting cluster nodes, this
paper only considers the reasonable implementations
in such an environment. All execution time
estimations use the widely accepted [4][5] linear
model, where the communication time tc equals to

dc nttnt += 0)(, (1)
where n is message size, t0 is the initial latency, and
td is the time needed to transfer one data unit
(reciprocal of the effective bandwidth).

The simplest method of broadcasting is the linear
one when the data transfer is controlled from a
single source. This technique is simple and easy to
implement, but not very efficient: it has a linear
increase of execution time as the number p of
destination nodes grows:

)()(),(0 pOnttppnt dc ⇒+= , (2)
Because the source node plays a central role as a

single sender, this algorithm reduces collisions on a
shared medium, that is why it was preferred in the
early (middle of the ‘90-es) implementations of
communication libraries (LAM/MPI [7]).

The linear complexity of the broadcasting can be
reduced by taking advantage of distributed
implementation. The most general way is to
parallelize the control of the communication using a
binomial tree topology. In this case as the originator
forwards its data to other nodes, those later will also
act as secondary sources increasing the number of
senders in each step. This achieves an execution
time of O(log2n) complexity.

Compared to the linear implementation the main
advantages are the reduced complexity, and better
load balancing. This implementation scales better,
and is used in most current MPI implementations
(e.g. MagPIe [8] or MPICH [9]).

With additional implementation efforts, and by
sacrificing the portability, environment specific
protocol stacks (such as GAMMA [2]) can be
developed to further enhance the network
throughput. Different methods can take advantage of
hardware multicast or broadcast support. Here the
originator has to send the data only once, and the
hardware layer takes care of the rest In theory this
results in a complexity of O(1), thus these solutions
provide a high performance with perfect scalability.
This way each receiver node gets exactly the same
messages, implying that the problems of reliability,
handling large messages, and forming arbitrary
groups must be solved by the developers at the
software level.

The problem of reliability is a well-treated topic
[10][11], and is usually solved by a kind of
acknowledgment mechanism. As all the reply
messages are sent back to a single originator, their
processing may be costly on a large scale (ACK
flooding [11]). This problem can be alleviated using
lazy-acknowledgment protocols and multilevel ACK
collection [10]. Acknowledgment systems may also
take care of large messages, which must be broken
down into smaller pieces that can be handled by the
lower network layers. In this case, the originator
always has to be aware of the amount of empty
buffer space in all the destination nodes, and the
whole broadcasting can advance only at the pace of
the slowest partner. Although the desired O(1)
complexity is not always reached in the practice, the
hardware support still offers the fastest and most
scalable solution for broadcasting. Unfortunately,
the price is paid by the higher implementation
efforts and the total loss of portability. The
properties of the above mentioned methods are
summarized in Table 1. For the sake of
completeness the new symmetric algorithm to be
introduced in the next section is also included.

3 Symmetric Asynchronous Broadcast
Although most message passing libraries allow

using asynchronous communication, their group
primitives are synchronous. This way the total time
of communication is the sum of the consecutive
message sending steps as described in Equations (1)
and (2). However previous studies [1][2][12]
showed, that losses from the software inefficiencies
can be reduced by allowing various communication

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp104-109)

Table 1. Comparison of different methods of broadcasting

Flexibility Performance Method of
broadcasting complexity of

implementation
portability (op.

system, networks)
implementing

reliability
min. delay at

the source
execution

time

Scalability

Linear simple simple simple n messages O(n) bad
Binary Tree medium medium simple 2 messages O(log2n) medium
Hardware sup. complex none complex 1 message O(1) exellent
Symmetrical medium medium simple 1 message O(1) limited

Fig 1. Symmetrical asynchronous broadcasting scheme
time [dt

p
n]

originator destination 1

–1

–0

–3

–2

–2p

–2p-1

–

–p+1

–p

destination 2 destination 3 destination p

p-1

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

steps to overlap with the computation and as well as
with each other. Asynchronism helps the parallel
messages to make better use of the physical
bandwidth, so it can improve the performance of the
traditional methods by hiding the effect of the initial
setup time (t0).

To achieve better results we combine
asynchronous communication with message
decomposition. The latter increases the parallelism,
while asynchronous communication eliminates the
effect of the additional initial t0 latencies introduced
by the greater number of smaller messages. The
proposed symmetric algorithm consists of a complex
scheme divided into two overlapping phases
presented separately in Fig 1. In the first phase the
source node sends a different part of the original
message to each destination node, which all act as
secondary sources in the second phase. With a
number p of the destination nodes the algorithm
works as follows:

Phase 1. The source node cuts the message of size n
to be broadcasted into p pieces. To avoid rounding
errors, piece i is formed as

 −
−

=

 −
=

p
ni

p
nilength

p
niaddress)1(*)1(

, (3)

where the notation x gives the largest integer less
than or equal to x. The message fragments are
completed with administrative information in order
to allow the final reconstruction at the target nodes.
The source node forwards piece i to destination node
i, but does all transfers are done in parallel thereby
eliminating the effect of the additional t0 latencies.
Thus the total time cost of phase 1 is

d
d

c ntt
p

ntptpnt +=+= 00),(
(4)

Phase 2. When receiving first a message part,
destination node j allocates a memory space for the
whole message of size n, and copies the part just
arrived to its final place. The further arriving
message parts are copied to the relevant locations in
the already existing buffer. When an incoming
message part comes from the original source (was
created in phase 1), then current destination node is
responsible for forwarding this fragment to each of
the remaining p-1 destination nodes. While
distributing this message fragment to the partners,
the node is still able to receive other message
fragments due to the asynchronous communication.

The algorithm is finished when all the message
fragments have arrived at all the destination nodes.

It is important to note, that this algorithm does not

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp104-109)

make any assumption on the order of the arriving
message parts. It is possible that the destination
nodes receives some of the message parts from the
second phase getting their part to distribute from the
source node.

Considering a cluster system where the nodes are
connected through a switching hub in full-duplex
mode, the ideal execution time of the algorithm is
only limited by the physical bandwidth of the links.
The critical (slowest) path of execution is the
distribution of the last fragment, and this piece
leaves the source node according to Equation (4).
The secondary distributor node must forward this
message of length n/p to the remaining p-1 nodes,
resulting in a total execution time of

)12(2)1(),(000 p
ntt

p
ntptnttpnt d

d
dc −+=

−
+++=

. (5)
The execution time shown in Equation (5) has an

asymptotic complexity of O(1) for arbitrary values
of t0 and td parameters. Because of its symmetry the
algorithm is perfectly scalable in theory, and
provides significantly better execution times than
the widely used tree algorithm. Although the
complexity is equal to that of the hardware aided
solution, it is visible, that the broadcasting takes the
time of two full message transfers, which is double
of the expected time with hardware support.

Despite of its elegance, the algorithm suffers from
some drawbacks limiting its usability. The algorithm
is not efficient for very short messages, because
small packets carry a larger relative overhead of the
network protocols, and the symmetric algorithm
forces the generation of great number (~p2) of n/p
sized fragments. In case of small message sizes it is
better to distribute the whole information in a single
step during phase 1. A second problem is the
validity of the presumption that all the nodes are
able to send and receive at the full speed of their link
capacity. In practice the current computers can
easily cope with the full-duplex bandwidth of the
network adapter, but the switching hub can prove to
be a bottleneck. For the algorithm to scale perfectly
the switching hub must be able to provide full speed
at all of its ports at the same time. Although the
amount of the incoming and outgoing data is evenly
distributed in time, the switching hub has to handle
the competition of more nodes sending data packets
to the same destination. As the scalability of the
algorithm is limited by the saturation point of the
active network equipments, the efficient usability of
the new algorithm is practically limited to small
cluster environments (a few tens of nodes).

4 Performance Measurements
This section demonstrates the practical merits of

the newly introduced asynchronous algorithm by
comparing its execution time to that of the widely
used binary tree method. To preserve the fairness of
the comparison the same hardware and software
environment were used during the measures. The
testbed used for the validation measures was built up
out of 15 uniform PCs having an Intel Pentium IV
processor of 2.26 GHz, 256 MB RAM, and an Intel
82801DB PRO/100 VE network adapter of
100 Mbits. The nodes were connected through a
3Com SuperStack 4226T switching hub. All the
nodes were running Windows XP operating system.
An implementation of MPICH (NT-MPICH v1.3.0
[9]) was used to implement and test both the
proposed and the common tree-based algorithms.

The right choice of the measurement domain is an
important question. By studying the communication
patterns of real-world, MPI based parallel
applications Vetter and Mueller found in [13], that
message sizes in group communication is relatively
small. Another study [14] examined the message
size distribution of the NAS Parallel Benchmark
suite [15]. The NAS Benchmarks include multiple
kernels working on datasets of five different sizes to
model a wide palette of application types. This study
found that half of all the messages are smaller than
10 kB, and only a fraction is greater than 1 MB. As
a result we have chosen to handle message sizes
between 2 bytes and 512 kB with logarithmic steps.

Two kinds of scenarios were considered. In the
first case, the own broadcast primitive of the
MPICH library was tested, which is based on tree
topology. In the second case the asynchronous
algorithm was tested implemented using the
asynchronous message transfer primitives
(MPI_Irecv, MPI_Isend). In order to allow
measuring the communication time on the source
node each destination node sends a short reply
message when all the broadcast data has
successfully arrived. In both cases, the total
communication time spans from the invocation of
the broadcast primitive to the arrival of the last
acknowledgement. To equalize the variations in
execution times due to any reason 10 separate
measurements were made in each point, and their
arithmetical mean is considered to be the result.

The complexity is more apparent on a linear scale,
but the domain of message sizes span over multiple
orders of magnitude, thus Fig. 2 shows the same
execution time results in both linear and logarithmic
scale. It is clearly visible that the symmetric

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp104-109)

Fig. 2. Execution times of the tree (a,d) and of the symmetric (b,e) algorithms, and comparison in the same chart
(c,f). All figures are represented using both logarithmic (a,b,c) and linear (d,e,f) scales

 algorithm is also able to keep its constant
complexity in the practice for a large domain of
message sizes, although for small and large
messages the execution time grows as the number of
nodes increases. For small messages this growth is
due to the overhead of message fragmentation (the
size of the different protocol envelopes is
comparable with the message size), and in case of
large messages the growth is caused by the
saturation effect of the network switch.

The performance comparison of the tree and the
symmetric algorithms, in Fig. 2, includes two charts
(c,f) presenting the execution times coming from the
two types of algorithm in the same diagram. For a
single destination node the two algorithms are
equivalent, as both have to send all the data in one
piece to the only destination node. The tree
algorithm shows a logarithmic increase and As
expected from Equations (5) the symmetric one
exhibits a hyperbolic behavior, as the number of
nodes grows. For small messages (≤ 2 kB) the tree
algorithm is slightly better, but for the remaining
part of domain the performance of the symmetric
algorithm is always superior to that of the tree
approach. When broadcasting to more than 9 nodes

the symmetric algorithm proves to be even twice as
fast as the traditional tree method.

5 Conclusion

The communication subsystem of the cluster often
embodies a weak point of performance, and
numerous efforts have been made for its
improvement. This paper has addressed one of these
issues in the domain of group communication
primitives. The aim was to improve the speed of the
broadcast primitive without changing the network
infrastructure and the used protocols. The proposed
new algorithm significantly differs from the
traditional methods. It has the advantage of being
portable and easy to implement but also benefits
from a execution time complexity of O(1), achieved
only with hardware support so far. The presented
algorithm builds on asynchronous, reliable point-to-
point communication operations and uses message
decomposition. The symmetry in its communication
pattern allows good scalability and automatic load
balancing.

The algorithm is intended to work in the very
common, fully-switched cluster environment. As
their ideal performance is achieved by maintaining

a)

d)

b)

e)

c)

f)

 Name of
the serie

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

Message
size[byte]

2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

16384 tree 65536 tree
131074 tree 262146 tree
16384 symmetrical 65536 symmetrical
131074 symmetrical 262146 symmetrical

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

exec. time [ms]

num. of destionation nodes

exec. time [ms]

num. of destionation nodes135791113
S1

S4
S7

S10
S13

S16
S19

0.01

0.1

1

10

100

1000
2-3
1-2
0-1
-1-0
-2--1

135791113
S1

S4
S7

S10
S13

S16
S19

0.01

0.1

1

10

100

1000

135791113
S1

S4
S7

S10
S13

S16

0

12

24

36

48 36-48
24-36
12-24
0-12

135791113
S1

S4
S7

S10
S13

S16

0

12

24

36

48

fexec. time
[ms]

name of
the serie

exec. time
[ms]

name of
the serie

num. of destiation nodes

num. of destination nodes

fexec. time
[ms]

name of
the serie

exec. time
[ms]

name of
the serie

num. of destination nodes

num. of destination nodes

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp104-109)

continuous communication between each pair of
nodes, the performance strongly relies on the quality
of the network switch. The saturation point of the
switching hub puts a practical limit on the scalability
perfect in theory, thus the algorithm can be used
efficiently in a small cluster environment (a few tens
of nodes) only. As the number of generated
messages grows with the square of the number of
the destination nodes, more messages are produced
than those by the traditional methods. More
messages generate more overhead, causing the
algorithm to perform worse for very small message
sizes.

To demonstrate the usability of the new method,
its performance was compared to the traditional
binomial tree implementation of the broadcast
primitive. During the tests the tree version was
outperformed significantly by the new symmetric
method for message sizes greater than 2 kB. For
large messages and more than 9 destination nodes
the new algorithm had a double performance
compared to the built-in communication primitive.

As broadcasting is an important building block of
other message passing primitives, the results
presented in this paper can be used directly for
improving the performance of group communication
in message passing libraries for cluster
environments. Efficiency and easily predictable
behavior also help to increase and tune the
performance of the distributed algorithms.

Acknowledgments
The fund of “Mobile Innovation Centre” has
supported in part, the activities described in this
paper. Their help is kindly acknowledged.

References:

[1] R. Martin, A. Vahdat, D. Culler, and T.
Anderson, “Effects of Communication Latency,
Overhead and Bandwidth in a Cluster
Architecture”, 24th Annual International
Symposium on Computer Architecture, Denver,
1997, pp. 85–97.

[2] G. Chiola, G. Ciaccio, “Efficient Parallel
Processing on Low-Cost Clusters with GAMMA
Active Ports”, Parallel Computing 26, Elsevier
Science, 2000, pp. 333–354.

[3] M. Snir, S. Otto, S. Huss-Lederman, D. Walker,
and J. Dongarra, “MPI–The Complete
Reference”, Volume 1 - The MPI-1 Core, 2nd
edition. The MIT Press, 1998.

[4] U. Meyer et al., “Algorithms for memory
hierarchies”, LNCS 2625, Springer-Verlag,
Berlin, 2003, pp. 320–354.

[5] J.W. Baugh Jr., R.K.S. Konduri, “Discrete
element modeling on a cluster of workstations”,
Engineering with Computers 17, Springer-
Verlag, London, 2001, pp. 1–15.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A
High-Performance, Portable Implementation of
the MPI Message Passing Interface Standard”,
Parallel Computing, 22(6), 1996. pp. 789–828.

[7] Indiana University, Indiana University's Open
Systems Lab, “LAM/MPI”,
http://www.lam-mpi.org/

[8] T. Kielmann, Rutger F. H. Hofman, H. E. Bal, A.
Plaat, and R. A. F. Bhoedjang, “MagPIe: MPI's
collective communication operations for
clustered wide area systems”, ACM SIGPLAN
Notices, 34(8), 1999. pp. 131–140.

[9] RWTH Aachen, Lehrstuhl für Betriebssysteme: Multi-
Platform MPICH.
http://www.lfbs.rwth-aachen.de/mp-mpich/

[10] S. Pingali, D. Towsley, and J. F. Kurose, “A
Comparison of Sender-Initiated and Receiver-
Initiated Reliable Multicast Protocols”,
Sigmetrics Conference on Measurement and
Computer Systems, ACM Press, New York, NY,
USA, 1994. pp. 221–230.

[11] D. Buntinas, D. K. Panda, and R. Brightwell,
“Application-Bypass Broadcast in MPICH over
GM”, International Symposium on Cluster
Computing and the Grid (CCGRID ’03), May
2003.

[12] S. Juhász, H. Charaf, “Exploiting Fast Ethernet
Performance in Multiplatform Cluster
Environment”, 19th Annual ACM Symposium on
Applied Computing, Nicosia, Cyprus, 2004. pp.
1407-1411.

[13] J. S. Vetter, F. Mueller, “Communication
Characteristics of Large-Scale Scientific
Applications for Contemporary Cluster
Architectures”, IPDPS, April 2002.

[14] M. Lobosco, V. S. Costa, and C.L. de Amorim,
“Performance Evaluation of Fast Ethernet,
Giganet and Myrinet on a Cluster”, International
Conference on Computational Science 2002, The
Netherlands, 2002. pp. 296–305.

[15] D.H. Bailey, J.T. Barton, T.A. Lasinski, and
H.D. Simon, “The NAS Parallel Benchmarks”,
Tech. Report NASA memorandum 103863,
NASA Ames Research Center, USA, July, 1993.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp104-109)

