
A Modular Software Framework for Camera Calibration

STEPHAN RUPP
Image Processing And Medical Engineering Department

Fraunhofer-Institute for Integrated Circuits IIS
Am Wolfsmantel 33, 91058 Erlangen

GERMANY

Stephan.Rupp@iis.fraunhofer.de http://www.iis.fraunhofer.de

Abstract: - Camera calibration is an indispensable step for augmented reality or image guided applications.
In the context of three-dimensional machine vision, camera calibration is the process to determine the
internal camera geometry and optical characteristics and/or the 3-D position and orientation of the camera
frame relative to a certain world coordinate system. Usually, a camera calibration procedure exhibits
typical steps, including feature point location in the acquired images, camera model fitting, correction
of distortion introduced by the optics and finally an optimization of the model’s parameters. Thus, the
components required for designing new calibration procedures show a high degree of similarity, so that reuse
of the processing steps plays an important role. For this reason, we present fundamental design issues of
a component-based calibration framework, which guides and supports the researcher in writing reusable
software components and therefore, improves the efficiency of his work. The modularity enables him to
modify only aspects of a given calibration procedure allowing to deepen the understanding on how the
different steps influence its overall performance.

Key-Words: - Component-based software framework, interface injection pattern, camera calibration

1 Introduction

Generically, calibration is the problem of estimating
values for the unknown parameters in a sensor model
in order to determine the exact mapping between sen-
sor input and output. A wide range of computer vi-
sion applications exist which require an accurate cal-
ibration of the visual system. In these application,
certain quantitative information is extracted from the
2-D images and overall performance depends on cal-
ibration accuracy [1].

According to [2], there are four main problems
when designing a whole calibration procedure: con-
trol point location in the images, camera model fit-
ting, image correction for radial and tangential dis-
tortion and estimating the errors originated in these
stages. In many cases, in a fifth step, these errors
are combined into a merit function that is subject to
an optimization procedure yielding an improvement
of the camera model’s parameters. While many re-
search has been devoted to model fitting, and some
implementations are publicly available [3, 4, 5, 6], few
works can be found in the literature about the other

stages of the process and surprisingly no approaches
have been published concerning software frameworks
that support the scientist in concentrating on the dif-
ferent steps of calibration while leaving the others
untouched.

Thus due to the structure of calibration, when in-
vestigating new calibration procedures, reuse plays
a decisive role. Powerful tools such as software ar-
chitecture and design patterns [7][8, 9] aiming at
the development of reusable software (systems) have
been evolved from the software engineering commu-
nity, however they are very abstract due to their
catholicity and require certain experience in order to
be chosen and applied right.

On the other hand, the researchers’ ambition is
to find new approaches for solving the calibration
problem. In order to attain this, they generally do
not spend much interest in writing aesthetic, highly
reusable code, nor are they willing to invest much
time on secondary aspects like graphical user inter-
face programming or other technical issues. Instead,
they would like to concentrate on the functional as-
pect and be able to realize their work efficiently.

1

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp73-81)



2 Background

2.1 Camera Calibration Theory

Capturing a scene with a camera implies a mapping
of 3-D (world) coordinates to 2-D sensor coordinates.
This mapping is usually described by means of a cam-
era model which is characterized by several parame-
ters that are commonly subdived into extrinsic and
intrinsic camera parameters. Camera calibration is
the process to determine parts or all of these para-
meters.

The most simple and commonly used camera
model is that of a pinhole camera, incorporating the
perspective projection of 3-D world coordinates onto
the 2-D imaging plane which is in most cases equiv-
alent to the CCD sensor array of a camera. In this
model, the relationship between the 2-D pixel coor-
dinates and 3-D world coordinates can be described
by a 3× 4 matrix P̃, called projection matrix, which
maps points from the projection space P3 to the pro-
jective plane P2, and can be decomposed uniquely:

P̃ = λw





αu γ u0

0 αv v0

0 0 1





︸ ︷︷ ︸

A





1 0 0 0
0 1 0 0
0 0 1 0





(
Rw tw

0T
3

1

)

︸ ︷︷ ︸

Dw

The 3× 4 matrix A, whose five entries are called in-
trinsic parameters, describes the change of the reti-
nal coordinate system. The angle of skew γ between
the two axes of the CCD sensor array is frequently
set to zero, justified by the virtually orthogonal im-
age axes in most modern CCD cameras. A camera
is calibrated when the matrix A is known, so that
one can use normalized coordinates which have an
Euclidean meaning. The 4 × 4 displacement matrix
Dw describes the change of the world coordinate sys-
tem (pose of the camera) called extrinsic parameters.

2.2 Camera Calibration Procedure

Camera calibration is usually performed by observ-
ing a special calibration object, which is in most cases
a flat plate with a regular pattern marked on it us-
ing colors causing a high contrast between the marks
and the background. The pattern is chosen such
that the image coordinates of the projected reference

points can be measured with high accuracy. The rela-
tionship between the 2-D image coordinates and 3-D
world coordinates is given by the collinearity equa-
tions [10, 11] or rather the homography [2, 12, 13]
by applying the projection matrix P̃ along with pro-
jective coordinates for the image plane and the 3-D
space:





u

v

1



 = P̃







X

Y

Z

1







(1)

with (u, v)′ denoting the image coordinates of a mark
and (X, Y, Z)′ being the corresponding world coordi-
nate. Using a great number F of marks, each one
yielding an equation of the form equation (1), the
perspective transformation matrix P̃ of the visual
system can be estimated. For stability reasons, usu-
ally N = 6 . . . 20 images of the calibration target are
captured from different positions and the identified
correspondences are utilized to build up the equation
system yielding P̃.

In general, lens-based optical imaging systems ex-
hibit geometric distortions in acquired images due
to liabilities in lens manufacturing. Especially, when
considering wide-angle lenses usually a strong bar-
rel distortion is observable, which necessitates a cor-
rection. These distortions are typically modelled by
radial and tangential distortion and introduced into
the calibration process as distortion coefficients ad-
justing the image coordinates (u, v)′. They extend
the set of camera parameters and are reasonably as-
signed to the intrinsic camera parameters, because
they affect the image formation.

In many cases the camera model’s parameters are
adjusted within a subsequent (non-linear) optimiza-
tion of the so-called back-projection error, yielding an
improvement of the overall model fitting quality:

ε =
N∑

i=1

F∑

j=1

εij , εij =

∥
∥
∥
∥
∥
∥
∥
∥





uij

vij

1



 − P̃ ·







Xij

Yij

Zij

1







∥
∥
∥
∥
∥
∥
∥
∥

2

The back-projection error of a single calibration
mark εij can be basically understood as the Euclid-

2

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp73-81)



ean distance between its initially extracted image co-
ordinates and the corresponding 3-D world coordi-
nates being projected back to the image plane with
the (current) camera model’s parameters.

As a merit function of the optimization procedure
the sum of all back-projection errors ε of all the marks
in all the images is often considered and its minimiza-
tion is persued.

3 Related Work

Application frameworks for special domains have
been intensivly proposed in the past years. Such ap-
proaches support the user in writing applications for
the specific domain they were designed for. As a rep-
resentant, the lgf3 framework is concerned with im-
age based rendering, especially with light field appli-
ances [14]. In order to speed-up research activities, a
versatile software framework has been proposed, that
encapsulates single tasks within Unix processes that
consume and produce standardized datastructures.
As a matter of fact, the approach is similar to our, as
it encapsulates essential tasks of a light field applica-
tion in computational entities. However, it differs in
how these entities are models; within lgf3, an entity
is modelled as a Unix process that is connected to
subsequent steps via the Unix pipe mechanism.

In the scope of camera calibration, there exists sur-
prisingly no dedicated application framework, that
supports the user in developing or studying camera
calibration schemes. However, several toolboxes and
publicly available algorithms exist [3, 4, 5]. The most
famous toolbox is called Calibration Toolbox for Mat-
lab [6] and requires the Matlab environment. Unfor-
tunately, extensability and modularity was not in the
scope when the toolkit has been designed. Instead it
provides a simple graphical user interface for locating
calibration marks of a chessboard pattern. Internally,
it makes use of the algorithm of Heikkilä and Silven’s,
published in [2, 15]. However, the high complexity of
its Matlab code makes it hard to extend or customize
the toolbox – even for unexperienced Matlab users.

Similarily, Zhang and Heikkilä provide implemen-
tations of their approaches as stand-alone applica-
tion [5] or Matlab scripts [4]. Again, these solutions
distract a scientist from a systematic analysis of the

calibration steps or the development of new schemes
on the basis of established algorithms since they re-
quire a not quite negligible effort for customization.

4 Contribution

In this contribution, we propose a framework based
on a modular software architecture with distinctive
calibration steps being represented by software com-
ponents. The software component itself is a computa-
tional unit [7] and represents ”a coherent package of
software that can be independently developed and de-
livered as a unit, and that offers interfaces by which
it can be connected and exchanged with other compo-
nents” [16].

Our approach enforces modularity due to its de-
sign and supports the scientists in writing reusable
software components with the algorithm of a certain
calibration step being encapsulated in a plugin. This
modularity enables the researcher to modify only as-
pects of a given setup when designing new calibration
schemes. On the other hand, exchanging and mod-
ifying only parts of an existing technique allows to
deepen its understanding and how the different steps
influence the overall performance.

The framework is designed to be independent from
any graphical user interface, but provides abstract
interfaces in order to handle graphical user interface
interaction such as mouse events or drawing facili-
ties (i.e. for selection and visualization of calibration
marks). This in conjunction with fundamental inter-
faces and base classes for calibration specific datas-
tructures, scientists are enabled to focus on the func-
tional aspect while realizing their work quickly and
easily.

We introduce a design pattern, called interface in-
jection pattern, that is applied in conjunction with
the visitor pattern [8] in order to realize a reflexion
mechanism that allows an automatic generation of
configuration dialogs. Furthermore, we present an
universal data exchange mechanism that requires no
prior knowledge of the data’s type, so that in gen-
eral every data type can be used directly without
writing any adaption code. In the context of a cal-
ibration tool, the mechanism is applied in order to
exchange the plugins’ data with a tool’s graphical

3

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp73-81)



user interface. For this, we identify the typical input
and output data of the different calibration steps and
provide abstract base class implementations of these
fundamental datatypes. By applying the well-known
adapter design pattern [8], third-party datatypes can
easily adopted to the fundamental type and thus used
within the framework. The data exchange mecha-
nism has been designed to be efficient regarding per-
formance and the system’s resources with the frame-
work being responsible for memory managment and
holding off (de)allocation code from the developer.

5 Methods

5.1 Framework Requirements

Many camera calibration techniques often only differ
in a few aspects such as calibration mark location or
the applied merit function. So the development of
new or understanding of existing ones requires the
exchange of only parts of the whole system (i.e. the
merit function) and demands for a modular design
principle, so that the reuse of the remaining
parts (algorithms) is feasible.

In order to support the developer the framework
should prevent him from being distracted from con-
centrating on the functional part of his work.
This can be achieved by certain automatisms pro-
vided by the framework, i.e. for rendering configura-
tion dialogs from the specification of the algorithms’
parameters, GUI programming for capturing mouse
movement, dragging and dropping of image area se-
lections or hide component communication and re-
source control from the user.

In addition, the creation of new plugins should be
quickly and easily feasible. This demands for a re-
flexion mechanism providing meta information
and a facility that gathers information about the plu-
gin’s connection points, the algorithm’s parameters
and dependent third-party libraries in order to auto-
matically generate all the necessary project files and
code skeletons.

5.2 Design and Implementation Aspects

This section is concerned with fundamental design
decision and implementation aspects in order to meet

IIPort

+ bool IsConnected()IParameter

+ void Accept(IParamVisitor&)

+ string GetLabel()

+ string GetDescription()

+ void Serialize(XMLStream&)

+ void Deserialize(XMLStream&)

IPlugin

+ PluginInfo& GetPluginInfo()

+ vector<IIPort*> GetInputPorts()

+ vector<IOPort*> GetOutputPorts()

+ void Reset()

+ IConfiguration& GetConfiguration()

+ void RegisterGUI(IGUIContext&)

+ void UnregisterGUI()

+ bool IsGUIRegistered();

+ void Run()

IPort

+ void SetLabel(string&)

+ string GetLabel()

+ string GetTypeName()

+ type_info& GetType()

PluginInfo

+ string m_strAuthor

+ string m_strPurpose

+ string m_strVersion

+ string m_strCreationDate

IConfiguration

+ ParamVector GetParameters()

+ RegisterParam(IParameter&)

+ void Serialize(XMLStream&)

+ void Deserialize(XMLStream&)

+ void OnChange(IParameter&)

IOPort

+ void ConnectTo(IIPort&)

+ void Disconnect(IIPort&)

+ bool IsConnectedWith(IIPort&)

+ bool IsConnected()

IMouseListener

+ WheelDir {WheelUp,WheelDn}

+ Button {Left,Middle,Right}

+ void OnMPressed(int, int, Button)

+ void OnMReleased(int, int, Button)

+ void OnMDblClicked(int, int, Button)

+ void OnMWheel(int, int, WheelDir)

+ void OnMouseMove(int, int)

IGUIContext

+ void Register(IMouseListener&)

+ void Register(IKeyboardListener&)

+ void SetFGColor(int, int, int)

+ void SetBGColor(int, int, int)

+ void DrawPixel(int, int)

+ void DrawLine(int, int , int, int)

+ void DrawRect(int, int , int, int, bool)

+ void DrawEllipse(int, int , int, int, bool)

+ void DrawText(int, int, string)

+ void WaitForClicks(int)

+ void SelectRegion(IRegionShape&, int)

IRegionShape

+ void Draw(IGUIContext&, int, int, int, int)

+ bool IsRegular()

IKeyboardListener

+ void OnKeyDown(int, Modifier)

+ void OnKeyUp(int, Modifier)

IParamVisitor

+ void Visit(IParameter& )

+ void Visit(IIntParameter& )

+ void Visit(IBoolParameter& )

+ void Visit(IStringParameter& )

+ void Visit(IFloatParameter& )

Figure 1: The framework is designed to be independent from
any graphical toolkit which is attained by a set of interfaces
defining fundamental services.

all the requirements discussed in section 5.1. Due to
the limited space, we have to restrict the coverage of
design and implementation details to the fundamen-
tal key concepts of our approach.

Regarding the implementation, we decided to use
the C++ programming language due to its dom-
inance in industrial and medical image processing
projects, object-oriented character and its powerful
template mechanism supporting generative program-
ming techniques [17].

5.2.1 Graphical User Interface Abstraction

One of our major concerns when designing the frame-
work was decoupling the frameworks business logic
from any graphical user interface (GUI), so that
everybody is able to use it in conjunction with his
favorite graphical toolkit. In accordance with this,
the framework is built on a set of interface classes,
providing all the services an application may need to
manage the plugins – this includes access to the pa-
rameters and user interactions such as capturing of
mouse events (fig. 1).

. Graphic Contexts

In order to support the developer in focussing
on calibration related issues, user interface details
are encapsulated and hidden from the user. The

4

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp73-81)



framework provides a clear interface for drawing,
picking and (image) region selection.

For example, if a plugin’s algorithm requires
a rectangular region within an image pre-
sented on the screen, the developer simply calls
GUI().SelectRegion(). The GUI()-method is part
of the plugin’s interface and returns a reference to
an implementation of the IGUIContext interface
(i.e. a hypothetical calibration tool’s image viewer
widget). Whenever a plugin is loaded, the widget’s
implementation of the IGUIContext interface is
automatically bound to the plugin, so that within
the plugins code, a call to GUI() will always result
in a valid context object.

In order to decouple the graphical feedback of the
region selection process from a specific implementa-
tion, an object can optionally be passed that imple-
ments the IRegionShape interface. The framework
itself calls the IRegionShape’s paint method within
the selection routine of the current IGUIContext im-
plementation, so that a user can simply introduce
customized shapes that are expressed by calls to the
IGUIContext’s abstract drawing methods.

. User Interaction Abstraction

In addition to the former drawing context ab-
straction, the framework provides two interfaces,
that are concerned with peripheral user interface
devices. So, if a programmer is interested in the
mouse’s position or in a keyboard event, he only
has to inherit form the corresponding listener
interface (IMouseListener or IKeyboardListener,
see fig. 1), implement its notification methods
and announce his interest by registering this
implementation in the GUI context by calling
GUI().RegisterListener(*this).

. Interface Injection Pattern

We introduce a design pattern, called interface
injection pattern, that is based on a template mecha-
nism in conjunction with subclassing technique. The
design pattern is related to the external polymor-
phism pattern of [18] and concerned with extending

ConcreteClass

+ void UserDefinedOperation1()

+ void UserDefinedOperation2()

+ void UserDefinedOperation3()

InjectionInterface

+ void UserDefinedOperation1()

+ void UserDefinedOperation2()

+ void UserDefinedOperation3()

Interface

+ void GeneralOperationA()

+ void GeneralOperationB()

Implementation of extended

interface methods

BaseClass

+ void GeneralOperationA()

+ void GeneralOperationB()

T

class ConcreteClass

: public BaseClass<InjectionInterface> {

...

};

<<<implements>>

Figure 2: The interface injection pattern allows to ex-
tend a common interface class (Interface) by introducing a
customized interface (InjectionInterface) into a inheritance
structure. Since the customization is passed as template argu-
ment of the generic base class (BaseClass), no multiple inher-
itance mechanism is required.

a class’ interface by application specific methods. In
contrast to other methods [8], this pattern does not
require a multiple inheritance mechanism.

The pattern consists of an abstract class (Inter-

face) defining the general interface of an application-
specific aspect. This class resides on top of the in-
heritance structure and its implementation is real-
ized in a templated class (BaseClass) that is not
directly derived from the interface class. Instead, its
super class is parameterized by the template argu-
ment. By this, customized interfaces (InjectionIn-

terface) can easily extend the base interface by in-
heriting the common interface, declaring additional
methods and passing this extended interface as tem-
plate parameter to the base class.

When developing families of classes
(ConcreteClass), that all exhibt a common
interface, but still vary in some aspects (expressed
by different additional methods), all the classes are
derived from the base class and inject their special
aspect as an extended interface by passing it as
template parameter. Since the customization inher-
its the common interface, the base class provides
implementation for the general methods and the
classes definition only receives implementation for
the additional methods.

In the following, we examplarily demonstrate the
application of the interface injection pattern to the
parameter reflexion mechanism of the framework.

5

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp73-81)



ParamBase

+ void Accept(IParamVisitor&)

+ string GetLabel()

+ string GetDescription()

+ void Serialize(XMLStream&)

+ void Deserialize(XMLStream&)

T

BoolParameter

+ string GetStateLabel(bool)

IParameter

+ void Accept(IParamVisitor&)

+ string GetLabel()

+ string GetDescription()

+ void Serialize(XMLStream&)

+ void Deserialize(XMLStream&)

IBoolParameter

+ string GetStateLabel(bool)

SelectionParameter

+ string GetAssocName()

+ string GetAssocName(int)

+ uint GetNumberOfEntries()

+ uint GetSelectionIndex()

IEnumParameter

+ string GetAssocName()

+ string GetAssocName(int)

+ uint GetNumberOfEntries()

+ uint GetSelectionIndex()

T = IBoolParameter T = IEnumParameter

Figure 3: The class diagramm for a boolean parameter and
a parameter that allows the selection of different alternatives.
The interface injection pattern introduce type-specific methods
and extends the common IParameter interface.

5.2.2 Reflexion

In order to focus on the essentials of an algorithm
secondary aspects have to be automated. A reflex-
ion mechanism gathers and provides relevant infor-
mation about a plugin that is used by the framework
to generate configuration dialogs or for performing
semantic checks on connection of plugins.

. Parameters and Dialog Rendering

The parameter’s interface class IParameter provides
standardised services for getting and setting the
parameter’s value as well as methods for associating
its type with a name and a description of its purpose.
This information can be accessed by a GUI in order
to automatically render the dialogs with mapping
the types to GUI elements or utilizing the purpose
description for displaying help.

All accesses are realized by type-safe method calls
so that no parsing and interpretation of additional
textual description is necessary. This is realized by
designing a double dispatch mechanism, in order to
select the appropriate rendering algorithm based on
the parameters’ types at runtime.

Double dispatching is a mechanism that dispatches
a function call to different concrete functions depend-
ing on the runtime types of multiple objects involved
in the call. In most object-oriented systems, the con-

crete function that is called from a function call in
the code depends on the dynamic type of a single ob-
ject and therefore they are known as single dispatch
calls, or simply virtual function calls.

At a first glance, double dispatching appears to
be a natural result of function overloading. Func-
tion overloading allows the function called to depend
on the type of the argument as well as the class on
which it is called, but calling an overloaded function
goes through at most one virtual table, so dynamic
dispatching is only based on the type of the calling
object. The problem is that, while virtual functions
are dispatched dynamically in C++, function over-
loading is done statically.

The problem described above is resolved with an
application of the visitor pattern [8]. The parame-
ter interface IParameter defines an accept method,
that is generically implemented in the templated base
class implemenation ParamBase:

template <class T>

class ParamBase : public T {

public:

...

virtual void Accept(IParamVisitor& rVis) {

rVis.Visit(*this);

}

...

};

The argument requires an object that implements
the IParamVisitor interface class, which provides
overloaded Visit() methods, each for a certain type.

The rendering engine itself implements this in-
terface and places the code for appropriate widget
creation in the corresponding methods. For exam-
ple, let a IEnumParameter require a widget that
allows the user to select between several options
whereas a IBoolParameter demands for a check
box widget to determine its state. Accordingly, the
Visit(const IEnumParameter&) method carries the
code for the creation of a combo box GUI element
whereas the Visit(const IBoolParameter&) con-
tains code for a check box construction.

When rendering the configuration dialog, the GUI
iterates through the plugin’s list of parameters and
calls their Accept() method while passing itself as

6

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp73-81)



visitor. The base class implementation of Accept()
calls the visitor’s Visit() method and provides a
this pointer as argument. By this, the decision how
a parameter object is rendered is resolved by the run-
time system, which re-routes the request to one of the
overloaded visitor methods that matches the concrete
type of the provided parameter object.

According to the different parameter types, in-
jection interfaces have been modelled that incor-
porate the special aspects of the different types.
Each of these interfaces is derived from the common
IParameter whereas the implementation of a con-
crete parameter type is derived from the templated
base class with the injection interface as template
parameter. Fig. 3 depicts the class diagramm for
a boolean parameter and a parameter that allows
the selection between different alternatives. As we
can see IBoolParameter and IEnumParameter de-
fine type-specific methods that extend the common
IParameter interface. Finally, the application of the
interface injection pattern yields two concrete para-
meter classes, one representing a boolean parame-
ter (BoolParameter) and the other one modelling an
enumeration (SelectionParameter).

5.2.3 Data Exchange

As one of the requirements, data exchange should
be hidden from the user, so that he does not have
to concern himself with writing allocation or deal-
location code in order to pass tokens. However,
inter-component communication should still be effi-
cient and flexible. In order to support the user, the
framework takes responsibility for managing all the
resources that are required in order to transport to-
kens from one plugin to another one.

For the sake of simplicity the standard data pass-
ing is done by value, therefore the data is copied. To
gain performance, data passing by reference, along
with automatic memory management, that elimi-
nates copying wherever possible can then be rein-
troduced separately (see 5.2.4). Decoupling these
two problems (data passing, and resource manage-
ment) not only allows for simpler solutions to both
problems, it also has the advantage that it is not
mandatory to use the automatic resource manage-

ment. This is advantageous in situations where very
simple or even primitive datatypes are passed, since
for those copying is more efficient than to perform
extensive resource management.

The data exchange mechanism is implemented on
two levels: One abstract, polymorphic level, that al-
lows the application framework to connect arbitrary
plugins, with arbitrary datatypes as input and output
tokens, and one concrete, typed level which provides
a simple and typesafe interface to the application pro-
grammer.

For the first level a purely abstract interface class
exposes functions for connecting ports and extracting
framework and GUI relevant data (fig. 1). The inter-
faces’ methods allow the application core to handle
data connections without treating different datatypes
explicitly. Type safety for the connection of ports is
given through a type check using the C++ builtin
runtime type information (RTTI) system. If the
datatypes of an input and an output port are not
compatible an exception is thrown. The ports them-
selves are accessible through interface functions of the
core plugin class, so that standardized entry points
for dynamic link libraries are possible.

These interfaces are then realized by a templated
set of classes that implement the interface functions,
along with the typed functions intended for use by
the application programmer.

template <class T>

class TypedIPort : public IIPort {

public:

...

bool Get(T& data);

...

};

template <class T>

class TypedOPort : public IOPort {

public:

...

void Put(T data);

...

};

Since all the functionality of these typed ports is
implemented as inline code, it is possible to use the

7

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp73-81)



ports with any datatype, without the need to add any
user code. The Get function only returns false in
the case that the port will not provide any more data,
and the plugin therefore can terminate its thread.
Accordingly the main loop in the user code will usu-
ally look like this:

while (m_inPort.Get(data)) {

// process data

...

m_outPort.Put(data);

} // end while

5.2.4 Resource Management

As mentioned the data passing framework is only able
to pass data by copying it. In cases where large datas-
tructures like images, volume data or 3-D geometries
are passed between plugins this would get very inef-
ficient. Thus the framework provides a shared mem-
ory pointer class that eliminates all copying wher-
ever possible, without introducing any memory ac-
cess overheads. The basic idea is similiar to other
shared memory pointers, with reference counting, as
they are implemented for example in [19]. Every in-
stance keeps track of a shared reference counter and
the shared data. If the number of references drops to
zero the shared data is deallocated.

They main difference of this implementation to
others is that most shared memory pointers explic-
itly all point to the same object, and accordingly also
all modify the same object, this behaviour would be
completely unacceptable in a multithreaded environ-
ment. Especially plugins that work in parallel on the
same token would cause severe run-conditions if they
were allowed to modify the same shared data. What
is acceptable however, are concurrent read accesses,
as long as the data classes do not modify any inter-
nal data on a read access (no mutable statements etc.
allowed).

template <class T>

class Token {

public:

Token();

Token(const Token<T>& ptr);

explicit Token(T*& data);

virtual ~Token();

bool operator==(const Token<T>& ptr);

bool operator!=(const Token<T>& ptr);

const T& operator*();

const T* operator->();

T GetWriteAccess();

private:

T* m_pData;

int m_iCount;

};

The implementation of a shared memory pointer
the framework provides therefore explicitly forbids
any write accesses to the shared data (operator* and
operator-> only return constant references). If write
accesses are needed for processing, then the data can
be retrieved from the shared memory pointer, which
either results in copying the data or, if the data ac-
tually was not shared (one reference only), in exclu-
sive ownership of the once shared data. Retrieving a
write access pointer from the shared memory pointer
(GetWriteAccess()) invalidates it. This is necces-
sary since the shared memory pointer is not useful
anymore, and keeping the reference around might
hinder a quick deletion of the shared data. Simil-
iarly, creating such a shared memory pointer invali-
dates the provided pointer, to minimze the risk that
the user retains a not memory managed pointer to
the now shared data.

5.2.5 Datastructures

In the context of a calibration tool, the prior mech-
anism is applied in order to exchange the plugins’
data with a tool’s graphical user interface. For
this, we identify the typical input and output data
of the different calibration steps and provide ab-
stract base class implementations of these fundamen-
tal datatypes. By applying the well-known adapter
design pattern [8], third-party datatypes can be eas-
ily adopted to the fundamental type and thus used
within the framework.

8

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp73-81)



6 Discussion And Conclusion

The presented approach proved its worth in numer-
ous research activities at our department. As ex-
pected, the framework allowed to concentrate on the
several foci of the research work and prevents from
wasting time with implementation effort that does
not contribute to the solutions.

In this paper, we presented a calibration frame-
work based on a modular software architecture with
typical calibration steps being represented by soft-
ware components that can be quickly and easily ex-
changed and replaced by new approaches in order to
create partially or totally new calibration schemes.
Our approach enforces modularity due to its design
and supports the scientist in writing reusable soft-
ware components with a problem-specific algorithm
being encapsulated in a plugin. The framework is
designed to be independent from any graphical user
interface. It provides abstract interfaces in order to
allow user interaction and enables drawing and com-
ponent configuration. By this, secondary aspects like
UI programming and resource control for the plugin’s
communication are kept away from the user and are
automatized by the framework.

This all speeds-up research activities in the field of
camera calibration and allows computer vision scien-
tists to concentrate on their work and allows them
to deepen the understanding of camera calibration,
which is an important prerequisite for the enhance-
ment of camera calibration algorithms.

Acknowledgements: The research was supported
by the Research Training Group 244 (Graduiertenkol-
leg) of the German Research Foundation (DFG).

References

[1] Mateos G. A Camera Calibration Technique Us-
ing Targets Of Circular Features. 5th Ibero-America
Symposium On Pattern Recognition (SIARP), 2000.

[2] Heikkilä J. and Silven O. Calibration Procedure for
Short Focal Length Off-the-shelf CCD cameras. Int.
Conference on Pattern Recognition, 1996.

[3] Intel. Open Source Computer Vision Library.
sourceforge.net/projects/opencvlibrary.

[4] Heikkilä J. Camera calibration toolbox for Matlab.
www.ee.oulu.fi/∼jth/calibr.

[5] Zhang Z. Microsoft Easy Camera Calibration Tool.
research.microsoft.com/∼zhang/Calib.

[6] Bouguet J.Y. Camera Calibration toolbox for Mat-
lab. www.vision.caltech.edu/bouguetj.

[7] Shaw M. and Garland D. Software Architecture. Per-
spectives on an Emerging Discipline. Prentice Hall,
1996.

[8] Gamma E., Helm R., Johnson R., and Vlissides J. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[9] Buschmann F., Meunier R., Sommerlad P., and Stahl
M. Pattern-Oriented Software Architecture, Vol.1 : A
System of Patterns. 1 ed. John Wiley and Sons, 1996.

[10] Chris McGlone E.M. Manual of Photogrammetry. 5
ed. ASPRS, 2004.

[11] Tsai R.Y. A versatile camera calibration technique
for high-accuracy 3-D machine vision metrology using
off-the-shelf TV cameras and lenses. IEEE Trans.
Robot. Automat., August 1987, pp. 323 – 344.

[12] Zhang Z. A Flexible New Technique for Camera Cali-
bration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, 2000.

[13] Sturm P. and Maybank S. On Plane-Based Camera
Calibration: A General Algorithm, Singularities, Ap-
plications. In IEEE Conference on Computer Vision
and Pattern Recognition, June 1999.

[14] Vogelgsang C., Scholz I., Greiner G., and Niemann H.
lgf3 - A Versatile Framework for Vision and Image-
Based Rendering Applications. In Vision, Modeling,
and Visualization, 2002.

[15] Heikkilä J. Geometric Camera Calibration Using Cir-
cular Control Points. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22(10), Octo-
ber 2000, pp. 1066 – 1077.

[16] D’Souza D.F. and Wills A.C. Objects, Components
and Frameworks with UML - the Catalysis Approach.
Addison-Wesley, 1998.

[17] Alexandrescu A. Modern C++ Design. Addison-
Wesley, 2001.

[18] Cleeland C., Schmidt D.C., and Harrison T.H. Exter-
nal Polymorphism. In Proc. of the 3rd Pattrn Lan-
guages of Programming Conference, September 1996.

[19] Sutter H. and Alexandrescu A. Boost C++ Libraries.
www.boost.org.

9

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp73-81)


