
A Recursive Algorithm for Global Alignment with Gap
Consideration in a pair of Sequences

Muneer Ahmad, Shahbaz Pervez, Iftikhar Ahamed, Adeel Akram, Nadeem Daud Potta.

Comsat Institute of Information Technology,
Abbottabad, NWFP

PAKISTAN

Abstract: - The Sequences either Protein or DNA contain precious Biological Information of certain
species for finding / knowing various characteristics of living organisms [5]. If a pair of sequence is not
properly aligned, we cannot get exact information to study about these species. It is important to find
the degree of similarity and no. of gaps in sequences. Sequences not properly aligned with or without
consideration of gaps cannot provide a true picture of what information they owe and what
characteristics they have. [1, 2]
 A recursive approach is being proposed in this paper that would not only find the Global
Alignment for a pair of protein / DNA sequence but also provides means for consideration of gaps
between them. The algorithm will calculate the degree of similarity and bounds / extends of gaps to
bring sophisticated results. The input variables (e.g. Strains) of program are user dependent and internal
calculations are being performed in recursive fashion to make the input Strains smart enough. [4]

Key-Words: - DNA Strain Sequence of Nucleotide Characters (A, T, G, C),
DSDR Algorithm for Duplicate Sequence Detection and Removal, Applet Java
program that runs on web.

1. Introduction
Sequence Alignment is a procedure of
comparing two or more sequences by searching
for a series of characters or a pattern of
characters that are in same order in sequences.
[4]
There are two types of Sequence
Alignment. [2]

i. Local Alignment
ii. Global Alignment

1.1) Local Alignment

In local alignment, the
alignment is made at regions
of identity and does not
include neighboring regions.
[2]
e.g.

1.2) Global Alignment

The Global Alignment contrary to the Local
Alignment is stretched over the entire
sequence length to find more matches at
different regions of Strains. [2]

e.g.

1.3) The Proposed Technique

The Recursive Technique works for better
solutions at Global Alignment but can be
modified a little to be used for Local
Alignment also [1]. The Internal functionality
of the algorithm is competent enough to deal
with both kinds of alignments with a small
change. Recursion brings fast and accurate
results [3] that is why this algorithm can be
considered to be at high level of efficiency
and reliability.

2) Previous Work

----TGC----ATGCT---ATGCCC

--AAGC---TAGCT---ATGCAT

----------ATGTT-------------

 -----------ACGTT--------------

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp117-122)

Following techniques are being used for the
alignment of two sequences. [1, 2]

i. DOT MATRIX Analysis.
ii. The Dynamic Programming

Algorithm.
iii. WORD or k-tupple methods.

2.1) DOT MATRIX Method

The DOT MATRIX method is useful only
when sequences are known to be very much
alike because it displays any possible
sequence alignment as diagonals on the
matrix. It may be used for insertion / deletion
and direct / inverted repeats of characters of
sequences. The Major limitation of this
method is that most DOT MATRIX programs
don’t show an actual alignment. [2]

e.g.

Fig.1 DOT MATRIX
APPROACH

2.2) Dynamic Programming Method

The Dynamic Programming Method is mostly
used for Global Alignment of sequences
devised by Needleman and Wunsch (1970),
this method was also used for Local
Alignment by Smith and Waterman (1981).
The procedure starts by attempting to match
all possible pairs of characters [5] between
sequences and by following a scoring scheme
for matches, mismatches and gaps. Although
this method is widely used for both kinds of
alignments but it has also a major drawback
that it can also be slow due to very large no. of
computational steps, which increase
approximately as square / cube of sequence
lengths. Thus utilization if this method for
large sequences is hard. [1]

2.3) WORD or K-Tupple Methods

The WORD or K-Tupple Methods are used by
the FASTA and BLAST algorithms [1, 2].
They align two sequences very quickly by first
searching for identical parts of sequences and
then joining them for alignment purpose by
Dynamic Programming Methods. Although
these methods are reliable enough in a
computational and statistical sense but as they
use Dynamic Programming Technique so
bring the result accurately but slowly

3) Our Work

The Algorithm works by taking input of two
Strains, analysis the two Strains recursively
and generates results about degree of
similarity, non similarity and usage of GAPS
for Global Alignment of Sequences.

 -----START PROCEDURE-----

Variables:

GAPE_ONE,GAPE_TWO Calculate Gaps
in two sequences.

MATCH Find no. of pairs matched.

MMATCH Find no. of pairs miss matched.

Block One Block out of several blocks in
sequences.
Gape1, Gape2 Calculate Gaps in individual
blocks
match No. of pairs matched in a Block
mmatch No. of pairs miss matched in a
Block
N No. of characters in Strain
n No. of characters in a Block
 1) [Outer Iteration for no. of Blocks]
Repeat for Block = n to Block ≤ N with Block
= Block +n
2) [Initialize Block Variables]

Set
 Gape1 = Gape2 = 0
 Match = mmatch = 0
 Var y = Block-n

3) [Call Recursive Function]

 CALL Recursive ()
Set
 MATCH = MATCH + match
GAPE_ONE = GAPE_ONE + Gape1

T G A T T A C A G C A T C G

T
A
G
C
A
A
T
G
A
C

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp117-122)

GAPE_TWO = GAPE_TWO + Gape2
MMATCH = MMATCH + mmatch

4) [Print individual Block Information]

Print “No. of Matches in Block”
Print “No. of Miss Matches in Block”
Print “No. of Gaps used in Sequence1”
Print “No. of Gaps used in Sequence2”

5) [Function Definition Recursive]

IF S1[y] equals GAP then

 Gap1 = Gap1 + 1
 END IF
IF S2[y] equals GAP then
 Gap2 = Gap2 + 1
 END IF

IF (S1[y] Not equals GAP OR S2[y] Not
Equals GAP) AND S1[y] equals S2[y] then
 Match = match +1
 END IF

IF S1[y] Not Equals S2[y] then
 mmatch = mmatch + 1
 END IF
 y = y + 1

6) [Check Recursion Condition]

IF y < Block
CALL Recursive ()

7) [Overall Result for a pair of Sequences]

Print “No. of Matches ”
Print “No. of Mismatches”
Print “No. of Gaps used in Sequence 1”
Print “No. of Gaps used Sequence 2”

------ END PROCEDURE-------

3.1) Functionality of Algorithm

The Algorithm uses a recursive procedure for
its operation. It inputs two Strains and divides
them into equal length blocks. The individual
blocks are made responsible to provide
information about matching, miss matching
pairs, gaps and percentage match of two
Strains. The iterations are performed
recursively to move into all blocks. The final
information is obtained by integrating the
information got from individual blocks.

3.2) Complexity of Algorithm

Complexity of Algorithm is N/n log (n)

Where N No. of characters in Sequence.
 n No. of characters in individual
block.

3.3) Sample Run using C++ (Test 1)

The functionality of the algorithm was tested
to be quite satisfactory and brought the desired
results, here is the sample C++ code described
below.

#include<iostream.h>
#include<stdio.h>

#include<string.h>
#include<conio.h>

void rec(void);

int GAP1,GAP2,MATCH,MMATCH;
//capitals for whole sequences

int gap1,gap2,match,mmatch,bl;
char s1[40],s2[40];
int y;

void main()
{
clrscr();

GAP1=GAP2=MATCH=MMATCH=0;

int n=10; //no. of chars in a block

cout<<"\nEnter 1st sequence ";
gets(s1);
cout<<"\nEnter 2nd sequence ";
gets(s2);
int N=strlen(s1); //Total no of chars

for(bl=n;bl<=N;bl+=n)
{
gap1=gap2=match=mmatch=0;

y=bl-n; //initiate from 1st char of
block
rec();

MATCH+=match; //global calculation

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp117-122)

GAP1+=gap1; //for the whole
sequences.
GAP2+=gap2;
MMATCH+=mmatch;

cout<<"\nThe no of gaps in seq.1 in block#
"<<bl/n<< "="<<gap1;
cout<<"\nThe no of gaps in seq.2 in block#
"<<bl/n<< "="<<gap2;
cout<<"\nThe no of MATCHES in block#
"<<bl/n<< "="<<match;

cout<<"\nThe no of Mismatches in block#
"<<bl/n<< "="<<mmatch;

cout<<"\nThe %age of matches in block#
"<<bl/n<< "="<<float(match*100)
/n<<"%";

cout<<"\n\nPress any key to proceed\n";
getch();

} //end for

cout<<"\n\n\n\t\tThe whole sequence is
finished"

 <<"\n\t\t Press any key to proceed\n\n";
getch();

cout<<"\nThe final result for whole
sequences"

 <<"\n------------------------------------\n\n";

cout<<"\nThe no of gaps in seq.1 "<<
"="<<GAP1;

cout<<"\nThe no of gaps in seq.2 "<<
"="<<GAP2;

cout<<"\nThe no of MATCHES "<<
"="<<MATCH;

cout<<"\nThe no of Mismatches "<<
"="<<MMATCH;

cout<<"\nThe %age of matches "<<
"="<<float(MATCH*100) /N<<"%";

getch();
} //end main

void rec(void)
{

//gaps

 if(s1[y]==' ')
 gap1++;
 if(s2[y]==' ')
 gap2++;

//no of matches & mismatches

if(s1[y]==s2[y])
 match++;
if(s1[y]!=s2[y])
 mmatch++;
y++;
if(y<bl)
rec();

}

 3.4) Sample Run using Java (Test 2)

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class analysis extends Frame
implements ActionListener
{
int
rem,quo,a,b,t,match,mismatch,gap1,gap2,t9;
float per;
String temp1,temp2;
String[] arr1;
String[] arr2;
Label l1=new Label("Enter first string:
");
TextField t1=new TextField(25);
Label l2=new Label("Enter second string:");
Button b1 =new Button(" Calculate ");
TextField t2=new TextField(25);

public analysis()
{
super("Analysizer");
setLayout(new FlowLayout());
gap1=0;gap2=0;
t=0;
match=0;
mismatch=0;
per=5;
add(l1);
add(t1);
add(l2);
add(t2);
add(b1);

b1.addActionListener(this);

setSize(400,400);
setVisible(true);
addWindowListener
(
new WindowAdapter()

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp117-122)

{
public void
windowClosing(WindowEvent e)
{
System.exit(0);
}
}
);
}
void match(char ch1,char ch2)
{
if(ch1!=' '&&ch2!=' ')
{
if(ch1==ch2)
match++;
else
mismatch++;
}
}
//end of function

 //cons

public void
actionPerformed(ActionEvent e)
{

if(e.getSource()==b1)
{

temp1=t1.getText();
temp2=t2.getText();
quo=temp1.length()/10;
rem=temp1.length()%10;
arr1=new String[quo];
arr2=new String[quo];
if(temp2.length()<temp1.length()||tem
p2.length()>temp1.length())
{
JOptionPane.showMessageDialog(nul
l,"Both strings must be of equal
length","Stop",JOptionPane.ERROR_
MESSAGE);
//JOptionPane.showMessageDialog(n
ull,"Length of t1 is
"+temp1.length(),"Stop",JOptionPane.
ERROR_MESSAGE);
}
else
{
//parsing code
for(a=0;a<temp1.length();a++)
{
if(temp1.charAt(a)==' ')
gap1++;

if(temp2.charAt(a)==' ')
gap2++;
}
for(a=0;a<quo;a++)
{
arr1[a]=temp1.substring(t,t+10);
arr2[a]=temp2.substring(t,t+10);
t+=10;
for(b=0;b<10;b++)
match(arr1[a].charAt(b),arr2[a].charA
t(b));
//dialogs
per=match*10;
JOptionPane.showMessageDialog(nul
l,"Number of matches : "+match+"\n
Number of mismatches:
"+mismatch+"\n Number of gapes in
string1 "+gap1+"\n Number of gapes
in string2 "+gap2+"\n Percentage of
matches "+per,"Result of block#
"+(a+1),JOptionPane.INFORMATIO
N_MESSAGE);
match=0;
mismatch=0;
per=0;

}//end of parsing

//JOptionPane.showMessageDialog(n
ull,"rem=
"+rem,"asdas",JOptionPane.INFORM
ATION_MESSAGE);

for(b=0;b<rem;b++)
{
match(temp1.charAt(t+b),temp2.char
At(t+b));

}
JOptionPane.showMessageDialog(nul
l,"Number of matches : "+match+"\n
Number of mismatches:
"+mismatch+"\n Number of gapes in
string1 "+gap1+"\n Number of gapes
in string2 "+gap2+"\n Percentage of
matches "+per,"Result of block#
"+(a+1),JOptionPane.INFORMATIO
N_MESSAGE);

per=2/4;

System.out.println(per);

}//end of else
}

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp117-122)

}
public static void main(String[] args)
{
analysis ana =new analysis();
}
} //end of class

4) Conclusion

This recursive algorithm works best for
accurate and prompt results. It partitions the
sequences into blocks and gets information
of matches, mismatches, gaps and
percentage matches in blocks. Then
integrates the information from individual
Blocks to display a final summary about two
Strains.
Also it not only finds the Global Alignment
for a pair of protein / DNA sequence but
also provides means for consideration of
gaps between them. The input variables (e.g.
Strains) of program are user dependant and
internal calculations are being performed in
recursive fashion to make the input Strains
smart enough.

6) References:

1. Genetics and Genome, Bioinformatics
Research and Genetic Algorithms (visit
bioinformaticsonline.org)
2. Bioinformatics Sequence and Genome
Analysis
(http://www.bioinformaticsonline.org)
3. Fast and Accurate Probe Selection
Algorithm for Large Genome (Wing-Kin
Sung, Wah-Heng Lee) IEEE-2003
4. Statistical Inference for well-ordered
Structure in Nucleotide Sequence(Shu-Yun
Le, Jih-H. Chen) IEEE-2003
5. SMASHing regulatory sites in DNA by
Human-mouse sequence comparisions
(Mihaela Zavolan, Nicholas D. Socci,
Nikolaus Rajewsky, Terry Gaasterland)
IEEE-2003
6. Genotype Discrimination: The complex
case for some legislative protection. Henry
T. Greely. 149 U. Pa. L. Rev. 1483 (May
2001)
7. Towards Cystic Fibrosis Gene Therapy
by John Wagner and Phyllis Gardner,
Annual Review of Medicine 48, 203-216
(1997)

8. Rouillard J. M. Herbert C. J. and Zukar
M. Oligoarrays, Bioinformatics (Application
Note), 18:486-487, 2002.
9. Blohm Dietmar H and Guiseppi. New
development in microarray technology12:4147,
2001.
10. Beheshti. B. Braude . 1 Park P.C and squire
JA Microarray cgh Methods Mol Biol 204:191-
207, 2002.
11. Rahmann S. Rapid large-scale
oligonucleotide selection for microarrays. In Proc
of the second workshop on algorithms in
Bioinformatics, 2002.
12. Bailey W.F. and Monahan A.S. In J.Chem
Ed.1978.

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp117-122)

