
Implementation of authentication techniques across closed ports.

RUANO, ILDEFONSO; GALAN, SERGIO; GARCIA, SEBASTIAN; VICIANA, RAQUEL
Electronic, Telecommunication and Automatic Engineering Department

University of Jaen
E.P.S. de Linares, C/ Alfonso X El Sabio 28, 23700, Linares (Jaén)

SPAIN

Abstract: This paper describes several authentication methods and presents a software packet that implements
them in order to improve the application security of programs that offers services in Internet. The
communication in the server side is done at the link layer. So it is possible to transmit data although the ports are
closed. At advantage, these services can not be detected when the attackers use portscans to probe networks and
determine what services are active in the host because the ports are closed at transport layer. Four different
methods have been developed. These techniques can be used in different environments and situations in order to
obtain several security levels. A server and a client program which implement the four methods have been
created. If the authentication is positive the server offers the possibility to the client of running some commands
as a request of the client. The client helps to obtain the authentication process and makes it easier.

Key-Words: Internet Security Authentication TCP Ports Link-layer Cyber-defence Portknocking

1 Introduction
 When an application offers a service in an IP
network the security is one of the most important
issues that the developer must consider. This security
lies in two main aspects, the first one is the
application security and the second one is the
application-access network security. The application
security is discredited daily due to multiple alerts that
appear everyday. Therefore an optimal security level
only based on a well-done application is an
impossible idea. The applications must be helped
with software and networks devices that minimize the
attacks. This work describes a series of techniques
that add greater security to Internet services and are
based on the ports hiding process at transport layer.
In addition it is presented an application that
implements these techniques and shows its
possibilities.
 The first step to attack network software is to
detect its presence. For this reason attackers usually
employ portscans during reconnaissance to probe
networks and determine what services are active on
which hosts [1]. For the purpose of providing services
to unknown callers, a service contact port is defined.
A list specifies the port used by the server process as
its contact port. The contact port is sometimes called
the "well-known port". Therefore if an attacker
obtains the list of the open ports it is equivalent to
obtain a list of open network services. As a next step,
they obtain a great amount of information about the
service and then they can launch frequently pre-
scripted attacks against well-known vulnerabilities

(bugs). The developed methods shown in this work
avoid attackers from reaching this phase and present
these features:
a) They are situated as a protection layer above the
network services.
b) They do not show any open port at transport layer.
c) They obtain the input data from a network
interface (at link layer).
 In order to facilitate the data reading, the libpcap
library has been used [2][3]. Lipcap is a system-
independent interface that provides a framework for
low-level network monitoring. This software is used
by several applications (tcpdump, arpwatch) and
other related works [4][5].
 The received data are filtered and analyzed. Then if
this data are correct, arrive in the correct order and on
time then the authentication process is positive. In
this case the client can run a script in the server which
can open/close services, perform other system
management functions or configure a firewall in
order to open/close ports.
 The implemented methods are different adaptations
of portknocking technique. The most common
implementation of portknocking consists in reading
the firewall log file, looking for a combination on
successive connection attempts to different ports [6].
 This procedure constitutes an additional layer of
authentication that mainly provides two benefits:
1. It hides non-public network services to non-
authorized users.
2. It avoids DoS (Denial-of-Service) attacks. Firstly a
lightweight process, which can discard practically all

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp166-171)

the access attempts, is placed before another one
which can perform many heavyweight cryptography
calculations and exhausts server CPU resources [7].
Secondly it protects from SYN flood attacks (it sends
TCP connections requests faster than a machine can
process them).

2 Portknocking Methods
 Next some of the most common methods that are
able to obtain authentication across closed ports are
described. In all these cases it is supposed that exists
a client C which wants to obtain an authorization
from a server S which does not have any open port at
transport layer and is listening at the link layer.
 Several implementations that obtain the
authentication based on portknocking can be located
at the address http://www.portknocking.org.

2.1 Using header fields of the protocols
 Protocols TCP/IP headers contain fields that have
a constant value for the entire route from the origin to
the endpoint. This can be used to perform an
authentication process that works as it is explained
bellow:
 C sends a prearrange SYN packets sequence. The
SYN packets are connection request packet and each
packet has a different port number. These requests are
known as knocks, therefore, and so these techniques
are known as portknocking. S receives and processes
these packets at the link layer and compares the ports
sequence received with a fixed configured sequence.
If both of them are the same sequence then C is
authenticated by S and can order the running of a
command script in S. In order to use this method,
some questions have to be taken into account:
1. The random success probability caused by a brute
force attack is very small: 1/(216)N, where N is the
number of knocks of the sequence and 216 is the
number of ports that exists in the transport layer.
2. If someone listen the data traffic it can easily
perform an attack by an imitation process.
3. The IP packet order can not be guaranteed in
Internet owing to the IP protocol features. Therefore
the value of N must not be very high and the
maximum delay interval between knocks must not be
very low. If these points are not observed there is a
probability of putting the packets out of order.
4. If there is a firewall between C and S (in the route)
is quite feasible that the firewall discards the SYN
packets (Firewall usually discards practically all the
ports connection attempts). In this case S does not
receive any SYN packet.

Most of these points must be taken into account for
the next methods.

2.2 Sending encrypted information as data
 C shares a key with S; C uses this shared key and
sends a packet with encrypted information to S. S
waits for the arrival of a packet that (i) obeys a
condition (i.e. port number) and (ii) is encrypted with
the shared key. When the packet arrives S runs the
configured action which can be to open a specific
port for a time and then S waits for a second SYN
connection request packet. If the time expires and
does not arrive any packet, S closes the service.

2.3 Modified SYN packets
 This method is similar to the last one, the main
difference consist in the beginning: C sends to S only
one SYN packet that contains the encrypted key and
the port number that C wants to open. If the key is
correct S open the port and makes a three ways TCP
authentication resumes, otherwise S rejects the
connection.

2.4 Sending encrypted data prior to knocks
sequence
 This method does not use a prearrange SYN
packets sequence. C creates a random port sequence,
C encrypts this sequence with a S-shared key and
sends it to S in a packet. S receives the packet,
obtains the port sequence and waits for the packets
series that matches with the port sequence. If C sends
the packets correctly, S can authenticate C and the
process finishes.

2.5 Knocks of encrypted data
 Portknocking original implementation obtains the
knock information from the “Iptables” firewall log
files (linux). This implementation opens/closes ports
configuring the firewall. The system security
improves if the knocks information is encrypted with
a shared key.

2.6 The dark side
 Although these techniques have been developed to
increase the security level of a system, they can also
be used in a malicious sense [8]. Nowadays hackers
use portknocking techniques to hide malicious
software (malware). They install it in computers
without authorization (trojan or backdoors). When

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp166-171)

these methods are being used its detection becomes
difficult. However, the software presented in this
work requires super user permissions for its
installation and it is visible like any other process.
This circumstance avoids the installation without
permission of the system administrator.

3 Software Structure
 A server program has been developed (PuerTockd)
which implements different portknocking methods.
These methods are explained in detail in this section.
For the implementation of the server program open
source libraries have been used and the final program
itself is too opensource (It can be downloaded from
http://www4.ujaen.es/~alonso/pk.htm).
 The developed software general structure is shown
in figure 1.

PuerTockd

Input parameters

Script 1

Script 2

Script X

PuerTockc

XML File
or

Input parameters

XML File

Log FileError File

SERVERCLIENT

PuerTockd

Input parameters

Script 1

Script 2

Script X

PuerTockc

XML File
or

Input parameters

XML File

Log FileError File

SERVERCLIENT

Fig. 1: developed software general structure.

 The most remarkable features of PuerTockd are the
following ones:

• It has been written in C language and it works in

GNU/Linux environments using the “Libpcap”
library.

• It implements four authentication models through
closed-ports.

• The configuration can be carried out of two
different forms: by means of an external file in
XML format and by means of commands. In
order to work with a XML file the “libxml”
library v.2. has been used.

• It is designed in form of a daemon to be run in
background mode. Once in execution, it analyzes
all the incoming traffic of the link layer applying
filters that allow detecting a valid sequence for the
implemented method. It works with MAC
protocols, Ethernet and Wi-fi.

• If a positive authentication takes place, the server
allows running different commands scripts (Bash
shell) which implement some of the possible

tasks: remote command execution, the control of a
Firewall, or open and close services.

3.1 Internal Estructure
 Daemon PuerTockd has the internal structure
shown in Figure 2. This figure shows the three main
blocks:

MAIN
BLOCK

In
pu

t
pa

ra
m

et
er

s

Script 1

Script 2

Script X

XML Configuration File

Log File

CLIENT SERVER
PARSE Functions

Global Variables

MANAGEMENT
BLOCK

AUTHENTICATION
BLOCK

Scripts de comandos

OK Auth.

Black List Management Functions

Fundamentals Blocks

Error File

CL
IE

N
T MAIN

BLOCK

In
pu

t
pa

ra
m

et
er

s

Script 1

Script 2

Script X

XML Configuration File

Log File

CLIENT SERVER
PARSE Functions

Global Variables

MANAGEMENT
BLOCK

AUTHENTICATION
BLOCK

Scripts de comandos

OK Auth.

Black List Management Functions

Fundamentals Blocks

Error File

CL
IE

N
T

Fig. 2: PuerTockd internal structure.

Main Block: This block analyzes the command line
and the configuration file, also turns the process to
background mode and calls the corresponding
authentication function.
Management Block: it manages the correct
authentications and calls the corresponding script.
Authentication Block: it implements the
corresponding authentication techniques.

3.2 Server Configuration
 The basic server operation can be determined by
one of the two previously commented methods.
Figure 3 shows the XML file structure using a tree
representation.

<config>

<general>

<variable> <variable>

<particulares>

<lista_puertos>

<puerto> <puerto>
<alias>

<listacomandos>

<puerto> <puerto>

<alias_num>

<alias>

<alias_num>

<config>

<general>

<variable> <variable>

<particulares>

<lista_puertos>

<puerto> <puerto>
<alias>

<listacomandos>

<puerto> <puerto>

<alias_num>

<alias>

<alias_num>
Fig. 3: Configuration file structure.

The most important options that can be configured
are:

• The authentication method to implement.
• The configuration file and its location.
• The messages file of events registry and its

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp166-171)

location.
• The error messages file and its location.
• The client IP address. The authentication

requests from different IP addresses will be
ignored.

• The password to use in the methods that require
it.

• Execution in background.
• Ports Sequence to validate.
• Input Interface.
• Maximum delay interval between knocks.
• Period of time in which a not authenticated

direction IP remains in the address black list.
• Different command sequences that the client can

run once authenticated.

3.3 PuerTockc Client
 In addition, a client has been implemented via a
program (PuerTockc) and is developed also in
language C. This program allows testing the different
authentication methods and works under GNU/Linux.
The use of this program is not necessary in all the
methods, since some of them can be proved with
standard software of other S.O.
Like PuerTockd, PuerTockc can be configured
through the input parameters or via a XML file.

4 Implemented Methods
 The four authentication models are adapted to
different environments and security requirements.

4.1 “knockmal” Method
 This method is presented in section 2.1. The client
application, in order to be authenticated, sends a
request connection packets sequence (SYN). Each of
these packets includes the port number in the
corresponding field of the TCP header. These
requests are known like knocks, for that reason this
technique is also known like portknocking.
PuerTockd receives and processes these packets in
the link layer, comparing the sequence of ports
received containing the formed sequence. If the
received sequence is the correct sequence the
authentication takes place, and the client is able to
run the desired actions in the server. Normally this
method can not be used when the server is protected
by means of a Firewall, because this one can block
the packets sent to non-allowed ports, and therefore
the packet sequence is not validated by PuerTockd.
 Figure 4 shows a scheme-example describing the
operation of this method.

Frame 1, Port p1’
Frame 2, Port p2’
Frame 3, Port p3’

Frame N, Port pN’

Port sequence OK?
(p1,p2,p3,...pN = p1’,p2’,p3’,...pN’)

Frame N+1, Port pN,O

Execute order O

Yes

Client side Server side
(PuerTockd)

Frame 1, Port p1’
Frame 2, Port p2’
Frame 3, Port p3’

Frame N, Port pN’

Port sequence OK?
(p1,p2,p3,...pN = p1’,p2’,p3’,...pN’)

Frame N+1, Port pN,O

Execute order O

Yes

Client side Server side
(PuerTockd)

Fig. 4: knockmal method Scheme-example.

4.2 “dns_auth” Method
 This method solves the problem that can be
produced with the use of the previous method,
because it only uses a fixed port to make the
authentication that can be programmed in the
Firewall. This method uses a DNS protocol to send
only one packet [9]. The client application, in order
to be authenticated, communicates with the
PuerTockd server by means of DNS message. The
authentication message is inserted in a domain
question field of the DNS protocol. Figure 5 shows
the DNS message that is sent if the password is
"miclave" and the order "ftpopen" (to open the FTP
service in the server).
In addition, figure 5 also shows the typical scene of
use of this method.

CLIENT PUERTOCKDFIREWALL

CLIENT (INTERNET) SERVER LAN

LANINTERNET

DNS Message 12 bytes DNS header 8 miclave1 7 ftpopen 00 0101

CLIENT PUERTOCKDFIREWALLFIREWALL

CLIENT (INTERNET) SERVER LAN

LANINTERNET

DNS Message 12 bytes DNS header 8 miclave1 7 ftpopen 00 0101

Fig. 5: Typical scene of use of “dns_auth”.

 In order to make an authentication, commands as
"dig" (linux) or "nslookup" (windows/linux) can be
used instead the PuerTockc client. As the password is
transmitted in plane text, the security level is not very
high. Nevertheless, this method can be very useful
due to its easiness of use in environments like the one
described above.

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp166-171)

4.3 “knockudp” Method
 “Knockudp” method implements encrypting
techniques. Therefore, it is better adapted than both
previous methods in non secure environment.
 This method begins transmitting a set of messages
UDP from the client application (PuerTockc) that
include a certain ports sequence. This sequence must
be verified by the server (PuerTockd).
 When the sequence is correct, PuerTockd uses the
IP address and the port used in the last packet of the
received sequence to transmit to PuerTockc a UDP
message. This message includes a random vector of
size M. Then, PuerTockc must use a both client and
server well-known private key to codify the received
vector and to transmit it to PuerTockd in a new UDP
message. When PuerTockd receives this UDP
message and verifies the content, the client is
authenticated and is able to run the desired actions in
the server.
 By default, the coding function used is RIPEMD,
despite it is also possible to use others like MD5 or
SHA1. Figure 6 shows the typical interchange of
messages that takes place in the implemented
method.

Server side
(PuerTockd)

Client side
(PuerTockc)

Frame 1, Port p1’
Frame 2, Port p2’
Frame 3, Port p3’

Frame N, Port pN’

Port sequence OK?
(p1,p2,p3,...pN = p1’,p2’,p3’,...pN’)

Waiting Time=TW

Yes ==> Send Array:
V(M)

Frame 1’, Port pN,V(M)
HASH (V+K), K = Key

Frame N+1, Port pN’, HASH (V+K), O

HASH OK?
(local HASH = HASH (V+K))

Yes ==> Authent. OK ==> Execute O

Server side
(PuerTockd)

Client side
(PuerTockc)

Frame 1, Port p1’
Frame 2, Port p2’
Frame 3, Port p3’

Frame N, Port pN’

Port sequence OK?
(p1,p2,p3,...pN = p1’,p2’,p3’,...pN’)

Waiting Time=TW

Yes ==> Send Array:
V(M)

Frame 1’, Port pN,V(M)
HASH (V+K), K = Key

Frame N+1, Port pN’, HASH (V+K), O

HASH OK?
(local HASH = HASH (V+K))

Yes ==> Authent. OK ==> Execute O
Fig. 6: Operation Scheme of the method “knockudp”

4.4 “knockcifrado” Method
 The essential difference of this method referred to
"knockudp", is that transmissions from the
PuerTockd server to the client are not required.
 The first stage of this method is similar to the
previous method. Nevertheless in this one the last

packet sent from the PuerTockc client to the
PuerTockd server includes encrypted information, a
time-mark and a common key (allows the server to
determine if the client can be authenticated). Figure 7
shows an operation example of this method.

Frame N: MAC HASH Time OrderIP UDP

Headers Load

20 bytes

Destination
Port

Timestamp Key Order
HASH

FUNCTION

MAC

Server side
(PuerTockd)

Client side
(PuerTockc)

Frame 1, Port p1’
Frame 2, Port p2’
Frame 3, Port p3’

Frame N-1, Port pN-1’
Frame N, Port pN

(Port sequence OK)
(p1,p2,p3,...pN = p1’,p2’,p3’,...pN’)

AND (HASH OK)?
(local HASH = Received HASH)

Yes ==> Authent. OK ==> Execute Order

Frame N: MAC HASH Time OrderIP UDP

Headers Load

20 bytes

Destination
Port

Timestamp Key Order
HASH

FUNCTION

MAC

Server side
(PuerTockd)

Client side
(PuerTockc)

Frame 1, Port p1’
Frame 2, Port p2’
Frame 3, Port p3’

Frame N-1, Port pN-1’
Frame N, Port pN

(Port sequence OK)
(p1,p2,p3,...pN = p1’,p2’,p3’,...pN’)

AND (HASH OK)?
(local HASH = Received HASH)

Yes ==> Authent. OK ==> Execute Order
Fig. 7: Operation Scheme of the method “knockcifrado”

5 Other system features
 In this section we describe some relevant features
added to the system that were merely cited in the
general software structure presented in section 3.
These features are the events log, the IP address black
list and the command scripts.

5.1 Events Log
 The server system events log allows controlling the
more relevant events that take place in PuerTockd as:
wrong access attempts, correct access attempts,
mistakes, etc. The output messages are formatted
using XML syntax. The error messages (ERR by
default) and the rest of messages can be defined in
different output files. This is equivalent to the
standard outputs “stdout” and “stderr”.

5.2 Black List
 The software oriented to provide security in the
applications must be ready to tackle the committed
attacks produced against it. One of these attacks is the
attempt to discover the codes (or the port sequence)

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp166-171)

via a brute force mechanism. Another problem is the
possibility of an attacker making multiples attacks as
authentication attempts, mainly when these attempts
have the goal of diminishing the server process
capacity or complicating the regular customer’s
access.
 Even though PuerTockd adds a minimum load to
the system, it provides a set of functions that deal
with the creation and maintenance of a malicious
machines IP address list. So, when an IP address
exceeds a certain threshold of connexion attempts is
included in the black list and its traffic is discarded
(pcap library offers this possibility via filters). After a
configurable period of time the IP addresses loaded in
the black list are removed. Furthermore we can
configure the next parameters: numbers of wrong
attempts to be included in the black list, waiting time
after an IP address in the black list is marked to be
deleted, etc.

5.3 Scripts
 Once the client is authenticated, the client can run
in the server certain commands (orders) that have to
be previously configured. Furthermore, the
commands already selected to be run in the server can
be modified and new ones can be added using the
PuertTockd’s configuration file.
 The commands or scripts configured by default can
be grouped in three sets:
1. Open/Close services: sshd, proftp or any others
that are placed in the directory /etc/init. (These
services are only accessible for the IP that reached the
authentication).
2. Firewall Iptables control, in case the firewall is
running in the same host that PuerTockd.
3. No critical management functions: as an example a
management function that allows performing a mysql
data base security copy of the server has been
included.

6 Conclusion
 The implemented methods provide the capacity of
adding a higher level of security to Internet servers.
So, the developed software hides the server at the
level of the transport layer but allowing access from
the software of an easy client. The software shown in
this paper offers a security level that is not enough for
a normal server. Nevertheless this implementation
can add a new obstacle to the hackers who want to
access maliciously to the system. It is necessary to
use it integrated with other security technologies in
order to robustly protect a server.

 There is a Windows version of libpcap that is
called winpcap [10]. Winpcap has been used by other
investigators and as future work we consider the
developing of a new Windows version as well as the
implementation of new Portknocking methods
[11][12].

References:
[1] Atighetchi, M.; Pal, P.; Webber, F.; Jones, C.;

Adaptive use of network-centric mechanisms in
cyber-defence, 6th IEEE International
Symposium on Object-Oriented Real-Time
Distributed Computing, 2003, pp.183-192

[2] Carstens T.; Programming with pcap,
http://www.tcpdump.org/pcap.htm

[3] NAU’s Computer Systems Engineering; Packet
Capture with libpcap and other low level
network tricks,
http://www.cse.nau.edu/mc8/Socket/Tutorials/

[4] Chen, R.; Gao, J.; Hua, C.; Higen: An intelligent
system for misuse detection Proceeding of 2004
International Conference on Machine Learning
and Cybernetics, 2004, pp.2775-2778

[5] Corley, M.W.; Weir, M.W.; Nelson, K.; Karam,
A.J.; Simplified Protocol Capture (SIMPCAP),
Proceeding 5th annual IEEE SMC Information
Assurance Workshop, 2004, pp.176-182

[6] Kzywinski, M.; Portknocking: Network
authentication across closed ports, SysAdmin
Magazine, No.12, 2003, pp.12-17

[7] Barham, P. et al; Techniques for lightweight
concealment and authentication in IP networks,
Intel Research Berkeley 2002,
http://www.intel-research.net/Publications/

[8] Martin, K.; Click on this, you muthas, The
Register, http://www.theregister.co.uk, 2004

[9] Mockapetris, P.; RFC1035, Domain Names
Implementation and Specification, STD13,
USC/Information Sciences Institute, 1987

[10] Risso, F.; Degioanni, L.; An architecture for
high performance network analysis, Proceedings
6th IEEE Symposium on Computers and
Communications, 2001, pp.686-693

[11] Degioanni, L.; Baldi, M.; Risso, F.; Varenni, G.;
Profiling and optimization of software-based
network-analysis applications, Proceedings 15th
Symposium on Computer Architecture and High
Performance Computing, 2003, pp.226-234

[12] Zhimin, W.; Xiaolin, J.; Restoration and audit of
Internet e-mail based on TCP stream
reassembling, Proceedings ICCT International
Conference on Communication Technology,
vol.1, 2003, pp.368-371

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp166-171)

	RUANO, ILDEFONSO; GALAN, SERGIO; GARCIA, SEBASTIAN; VICIANA,
	University of Jaen
	1 Introduction
	4 Implemented Methods
	Fig. 7: Operation Scheme of the method “knockcifrado”

	5 Other system features
	5.1 Events Log
	5.2 Black List
	5.3 Scripts

