
From a New Way to Show the Universality of a Two-Layer Perceptron
to a New Approach to Digital Design

JOSÉ BARAHONA DA FONSECA

Department of Electrical Engineering and Computer Science
New University of Lisbon

Monte de Caparica, 2829-516 Caparica
PORTUGAL

 http://www.dee.fct.unl.pt

Abstract: - We show in a constructive way the universality of a two layer perceptron. We show how to build any
minterm of any logical function with one perceptron and how to build the OR of all the minterms with another
perceptron. This way it is possible to implement a logical function with N minterms with a two layer perceptron
with N+1 perceptrons. Next we addres the question of minimizing the number of perceptrons or threshold
elements to implement a given logical function. Here we have to answer to two open questions that have not yet
answered in the literature:1) Is the logical function linearly separable? 2) If the logical function is linearly non-
separable how to minimize the number of perceptrons or threshold elements to implement the logical function?
If we know that the logical function is linearly separable it can be implemented by one perceptron trained with
the Rosenblatt’s Perceptron Learning Rule [1]-[2] that guarantees convergence in the case of the existence of a
solution. We propose as a test of linearly non-separable logical function the Perceptron Learning Rule did not
converge after a very great number of epochs or iterations. As a method of minimization of the number of
perceptrons or threshold elements to implement a linearly non-separable function we propose a trial and error
procedure that generates all manners to implement the logical function with the mnimum number of perceptrons
or threshold elements, and if for all of them the learning rule did not converge for all associations of minterms
then we must increment the number of perceptrons and generate and test again all manners of implementation of
the logical function till we got a solution. Finally we present some examples of linearly non-separable logical
functions that we implemented with a minimum number of perceptrons or threshold elements.

Key-Words: - Logical Function, Minterms, Linearly Non-Separable Logical Function, Perceptron Learning Rule,
Methodology to Implement a Linearly Non-Separable Logical Function with the Minimum Number of
Perceptrons or Threshold Elements.

1 Introduction

 This work arises as a consequence of one of our classes of
Neural Networks where we show to our students that it is
possible to implement any logical function, even linearly
non-separable, with a two layer perceptron. Then at home
we read what we have done and said to ourselves:
‘Heureka! This is a new approach to Digital Design!’.
Then we made some literature research and found that
our idea is not original. In 1988 Yon B. Cho and
Yoshiyasu Takefuji [3] developed complex logical
circuits, including synchronous circuits, with only
operational amplifiers, resistances and capacitors. More
recently with the advent of VLSI and RTD circuit design
the idea of implementation of logical functions based on
threshold elements, which are nothing more than
Rosenblatt’s perceptrons, have been developed and also
very few design methodologies have been proposed [5]-
[10]. By the contrary there are a lot of proposals of
methodologies to implement linearly non-separable logic
functions with Rosenblatt perceptrons [11]-[25]. So why
to propose one more methodology? Because our
methodology guarantees always a minimum number of

perceptrons or threshold elements. As a curiosity we
found an old book published in 1971 about applications
of Threshold Logic [4] that seems to ignore the works of
Rosenblatt published in 1958 and 1961. Another curious
fact is that Valeriu Beiu in [7] seems to ignore that the
logical functions A>B and A≥B are linearly separable
logic functions and so can be implemented by only one
perceptron or threshold element and A=B may be defined
by not(A>B) AND not(A<B). For example, for four bits
words, we found after 15 epochs the solution

W1=[16 8 4 1 -16 -8 -4 -3],

b1=-1,

departing from zero weights. In figure 1 we show the
evolution of the accumulated error over one epoch using
the Perceptron Learning Rule [1]-[2]. For the function
A≥B we found after 13 epochs the solution

W1’= [16 7 3 1 -16 -7 -3 -1],

b1’=0.

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp64-69)

Fig. 1- Accumulated error over one epoch for A>B for
words of 4 bits length. We got one solution in only 15
epochs, 15x256=271 iterations.

And for 5 bits words we got the solution for A>B given
by

W2=[32 16 8 4 2 -32 -16 -8 -4 -3],

b2=-1

after only 21 epochs as you can see in figure 2. For the
function A≥B we found

W2’=[22 11 6 3 1 -22 -11 -6 -3 -1],

b2’=0

after only 8 epochs.

Fig. 2- Accumulated error over one epoch for A>B for
words of 5 bits length. We got one solution after only 21
epochs, 21x1024=21504 iterations.

And for 6 bits words we got the solution for A>B given
by
W3=[97 48 24 11 5 2 -97 -48 -23 -11 -5 -3],
b3=-2
after only 119 epochs as you can see in figure 3. For the
function A≥B we found after 116 epochs the solution
W3'=[100 49 25 12 5 3 -100 -49 -25 -12 -6 -4]
b3’=2

Fig. 3- Accumulated error over one epoch for A>B for
words of 6 bits length. We got one solution after only 119
epochs, 119x212 iterations, in about 26 minutes with the
Matlab nntool over a PC with a clock of 1GHz.

And for 7 bits words we got the solution for A>B given
by
W4=[195 98 49 24 11 6 2 -195 -98 -49 -24 -11 -5 -3],
b4=-2
after only 235 epochs as you can see in figure 4.

Fig. 4- Accumulated error over one epoch for A>B for
words of 7 bits length. We got one solution after only 235
epochs, 235x212 iterations, in about 4 hours with the
Matlab nntool over a PC with a clock of 1GHz.

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp64-69)

For 8 bits we got the following solution of A>B after 594
epochs and about 3 days of runtime with matlab 7 over a
Pentium IV with a clock of 3.6GHz,
W=[427 213 107 54 27 12 7 3 -427 -213 -107 -54 -27 -12
-5 -3],
b=-3.
It seems that for any number of N bits the function A>B
is linearly separable. Next we will show in a constructive
way the following result:

Theorem 1. The function A>B for words of any number
of N bits is linearly separable.

Is simple to verify that the perceptron with

W=[48 24 12 6 3 2 -48 -24 -12 -6 -3 -1]
b=-2

implements the function A>B for words of 6 bits and also

W=[96 48 24 12 6 3 2 -96 -48 -24 -12 -6 -3 -1]
b=-2

implements the function A>B for words of 7 bits, and so
on, so this way we can construct any comparator of any N
bits with only one perceptron, as we wanted to show. The
general expression of the weight vector is

W=[2N-4x6 2N-5x6 ... 6 3 2 -2N-4x6 -2N-5x6 ...-6 -3 -1]

Of course there are much more ways to build a
comparator with only one perceptron, but it is enough to
find one general expression to prove theorem 1. Next we
will show the following similar result:

Theorem 2. The function A≥B for words of any number
of N bits is linearly separable.

Is simple to verify that the perceptron with

W=[28 14 7 3 2 -28 -14 -7 -3 -1]
b=0

implements the function A≥B for words of 5 bits and also

W=[56 28 14 7 3 2 -56 -28 -14 -7 -3 -1]
b=0

implements the function A≥B for words of 6 bits, and so
on, so this way we can construct any comparator of any N
bits with only one perceptron, as we wanted to show. The
general expression of the weight vector is

W=[2N-3x7 2N-4x7 ... 7 3 2 -2N-3x7 -2N-4x7 ...-7 -3 -1]

 Nevertheless it remains two open questions to be
answered satisfactorily:
 1) How to Identify a Linearly Non-Separable Logical
Function?
 2) How to Minimize the Number of Perceptrons or
Threshold Elements to Implement a Linearly Non-
Separable Logical Function?
 In section 2 we make the constructive demonstration
of the universality of a two layer perceptron, in section
3 we enunciate our methodology to minimize the
number of perceptrons or threshold elements to
implement a linearly non-separable logical function and
in section 4 we apply it to some simple linearly non-
separable logical functions and finally in section 5 we
present our conclusions and possible research vectors
that may define the direction of our future work that
surely will include the application of evolutionary
computation techniques.

2 Demonstration of Universality of a Two
Layer Perceptron
It is simple to show that any minterm with N1 positve
variables, assuming that they only may be 0 or 1, and
N2 negated variables can be implemented by a
perceptron with weight +1 attributed to all positive
inputs/variables and with weight –1 attributed to all
negated inputs/variables and bias=-N1. And is also
simple to show that a N input perceptron with all
weights +1 and bias=-1 implements the logical OR of
all the N input variables.
 With these two types of perceptrons we may
implement any N minterm logical function with N+1
perceptrons.
 Furthermore if the logical function is linearly
separable it can be implemented by only one perceptron
and its weights and bias obtained with the Perceptron
Learning Rule [1]-[2]. If it is linearly non-separable in
most cases we can make associations of minterms that
result in linearly separable logical functions and so
implement it with less perceptrons or threshold elements
than N+1, N being the number of minterms of the
lineraly non-separable logical function.

3 Methodology to Minimize the Number
of Perceptrons or Threshold Elements

To our knowledge nobody before us did solve this
problem of minimizing the number of perceptrons or
threshold elements to implement a linearly non-
separable function.
 First we must identify a linearly non-separable logical
function. We consider that if after 100 million of epochs
the algorithm of Perceptron Learning Rule [1]-[2] did

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp64-69)

not converge then the logical function is considered
linearly non-separable.
 Next if the logical function seems to be linearly non-
separable then we must begin to generate all the
possible minterm associations that can be implemented
by two perceptrons, i.e., to group the minterms in two
associations, test for each manner to realize this
grouping if the two logical functions are linearly
separable and if for all the possible manners to group the
minterms in two perceptrons they did not converge then
we must go to the hypothesis of grouping the minterms
in three perceptrons or threshold elements and so on, till
we find a solution.
 This methodology seems simple but for a linearly non-
separable logical function with a lot of minterms it will
take a lot of computation to find a good solution. In the
near future we will try to improve this methodology in
terms of its runtimes.

4 Three Examples of Application
The 3 variable logical function f=m1+m2+m6+m7 seems
to be linearly non-separable but the association of the
following minterms is a linearly separable logical
function f2=m2+m6+m7 and it remains only m1. So f2
could be implemented by the following perceptron
W=[-2 4 2] and bias=-4 and m1 by W=[-1 -1 1]
and bias=-1. Even for this simple example this took
about 2h in a PC at 1GHz.
 Another more complex example of a 3 variable
logical function that seems to be linearly non-separable
is f=m0+m1+m2+m4+m6+m7, with 6 minterms. After
about 8h of computation we found the following optimal
solution: f2=m0+m1+m2+m4 and f3=m6+m7
that could be implemented by W2=[-1 -1 -
1], bias2=+1 and W3=[0 1 2], bias3=-3.
 Finally for the following four variable logical
function with eight minterms,
f=m0+m1+m5+m6+m8+m9+m14+m15, that seems to be
linearly non-separable, we found that f1=m0+m1+m8+m9,
f2=m6+m14+m15 and f3=m5 are linearly separable and may
be implemented by three perceptrons with weights
W1=[0 -2 -2 0], b1=0, W2=[-3 4 6 3], b2=-10,
W3=[1 –1 1 –1], b3=-2, respectively. This way this
complex function could be implemented only by 4
perceptrons or threshold elements.

Fig. 5- Evolution of accumulated error over one epoch for
function f1. In only 4 epochs we got one solution.

Fig. 6- Evolution of accumulated error over one epoch for
function f2. Although with less minterms we got one solution
only after 29 epochs or 29x16=464 iterations.

 It seems that the main drawback of our methodology
is its bad runtimes and the evolutionary computation
techniques may have a word to say in its improvement.

5 You May Say…
Of course we may solve these problems with sigmoides
in the first layer and a linear neuron in the second layer
and then use the backpropagation algorithm.
 For the third example of the previous example with
only three sigmoides we got a very good approximation
after 1000 epochs (see figure 6) and the weights and
bias of the first layer were
W1= [0.016061 10.9542 -10.9542 -0.01518
 -13.5412 14.0067 0.00015162 13.6972
 -5.8865 -25.3245 25.3248 5.8302]
bias1

T=[0.28408 14.4743 5.5862]
and the weights and bias for the linear neuron were

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp64-69)

W2=[1.7643 -3.5428 1.7643], bias2=1.7785, for a
random initialization of the weights and bias. After only
1000 epochs we got a mse as low as 3.5 10-13.

Fig. 7 Evolution of mse versus the number of epochs using
standardd backpropagation.

 So with only 4 neurons, 3 sigmoides and one linear
neuron we could make the same function that was
implemented with 4 perceptrons in the previous section.
Nevertheless it is much more difficult to implement a
good sigmoidal neuron than a perceptron with hardware
and to implement fractional or real weights than integer
weights.
 It would be nice if we can force big absolute values in
the weights and bias to facilitate the translation from a
sigmoidal network to a perceptron network. For
example, from the two variable XOR solution with a
two layer perceptron,
W1=[1 -1
 -1 1]
bias1

T=[-1 -1]
W2=[1 1], bias2=-1, we got the sigmoidal network
(sigmoides in the first layer and a linear neuron in the
second layer) defined by
W1=[200 -200
 -200 200]
bias1

T=[-100 -100]
W2=[1 1], bias2=0.

6 Conclusions and Future Work
Our methodology of identifying and implementing
linearly non-separable logical functions with a
minimum number of perceptrons or threshold elements
is very simple but has two big drawbacks: 1) We are

never sure if our logical function is really linearly non-
separable; 2) Its exhaustive search from the possible
ways to associate the minterms turns it very slow and
for more than 6 minterms the runtimes tend to be very
big (more than 10h for a PC at 1GHz).
 In the near future we are planning to compare our
algorithm to the few published in the literature of VLSI
design [5]-[10], and to the numerous published in the
literature of Neural Networks journals and conference
proceedings [11]-[25] based on a test set of complex
linearly non-separable logic functions.
 A possible way of evolution of our work is to try to
implement our methodology with the aid of
evolutionary techniques to improve its runtimes.
Nevertheless there are a lot of difficulties to implement
this approach namely the definition of a good fitness
function that will rank the population of candidate
solutions by their separability, i.e. how far the
associations of minterms are from linearly separable
logical functions and the number of perceptrons or
threshold elements necessary to implement them.

Acknowledgements
This work would not be possible without the aid of the
powerful tool ‘b-on’, www.b-on.pt, subscribed by our
university, that gave us the access to the full version of
papers published in a lot of resources and journals, like
the IEEE Xplore.

References:

[1] F. Rosenblatt, “The Perceptron: A Probabilistic
Model for Information Storage and Organization in
the Brain”, Psychological Review, Vol. 65, pages
386-408, 1958.

[2] F. Rosenblatt, Principles of
Neurodynamics,Washington DC, Spartan Press,
1961.

[3] Y. B. Cho and Y. Takefuji, “Analog Circuit Design
Based on Neural Networks”, in Proceedings of the
IEEE Twentieth Southeastern Symposium on
System Theory, pages 100-105, IEEE, 1988.

[4] S. Muroga, Threshold Logic and its Applications,
Wiley-Interscience, 1971..

[5] A. L. Oliveira and A. Sangiovanni-Vincentelli,
“LSAT: An Algorithm for the Synthesis of Two-
Level Threshold Gate Networks”, in Proceedings
of IEEE Int. Conf. On CAD, ICCAD’91, pages 130-
133, IEEE, 1991.

[6] M. J. Avedilo and J. M. Quintana, “A Threshold
Logic Synthesis Tool for RTD Circuits”, in
Proceedings of the EUROMICRO Systems on

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp64-69)

Digital System Design, DSD’04, pages 624-627,
IEEE, 2004.

[7] V. Beiu, “VLSI Complexity of Threshold Gate
Comparison”, in Proc. IEEE Int. Symposium on
Neuro-Fuzzy Systems, pages 161-170, IEEE, 1996.

[8]R. Zhang, P. Gupta, L. Zhong and N. K. Jha,
“Threshold Network Synthesis and Optimization
and its Application to Nanotechnologies”, in IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 24, No. 1,
pages 107-118, IEEE, January 2005.

[9]Journal of VLSI Signal Processing 38, 157–171,
2004,Operating Margin-Oriented Design Methods for
Threshold Element-Based Reconfigurable Logic Circuits
Realizing any Symmetric Function, KAZUO AOYAMA
[10]High-speed hybrid threshold-Boolean logic
counters and compressors, Padure, M.; Cotofana, S.;
Vassiliadis, S.; Circuits and Systems, 2002. MWSCAS-
2002. The 2002 45th Midwest Symposium on
Volume 3, 4-7 Aug. 2002 Page(s):III-457 - III-460 vol.3
[11]An optimal dimension expansion procedure for
obtaining linearly separable subsets
Yuen-Hsien Tseng; Ja-Ling Wu;
Neural Networks, 1991. 1991 IEEE International Joint
Conference on
18-21 Nov. 1991 Page(s):2461 - 2465 vol.3
[12] IMS algorithm for learning representations in
Boolean neural networks, Biswas, N.H.; Murthy,
T.V.M.K.; Chandrasekhar, M.; Neural Networks,
1991. 1991 IEEE International Joint Conference on
18-21 Nov. 1991 Page(s):1123 - 1129 vol.2
[13] Perceptrons revisited: the addition of a non-
monotone recursion greatly enhances their
representation and classification properties
Dogaru, R.; Alangiu, M.; Rychetsky, M.; Glesner, M.;
Neural Networks, 1999. IJCNN '99. International Joint
Conference on
Volume 2, 10-16 July 1999 Page(s):862 - 867 vol.2
[14]An improved expand-and-truncate learning
Yamamoto, A.; Saito, T.;
Neural Networks,1997., International Conference on
Volume 2, 9-12 June 1997 Page(s):1111 - 1116 vol.2

[15]Applications of binary neural networks learning to
pattern classification, Chu, C.H.; Kim, J.H.; Kim, I.;
Neural Networks, 1994. IEEE World Congress on
Computational Intelligence., 1994 IEEE International
Conference on, Volume 2, 27 June-2 July 1994
Page(s):907 - 911 vol.2

[16].IEEE TRANSACTIONS ON NEURAL
NETWORKS. VOL. 6, NO. 2, MARCH 1995,
pp. 318-331,Classification of Linearly

Nonseparable Patterns by Linear Threshold
Elements

Vwani P. Roychowdhury, Member, IEEE, Kai-Yeung
Siu, Member-, IEEE, and Thomas Kailath, Fellow,
IEEE
[17]IEEE TRANSACTIONS ON NEURAL
NETWORKS, VOL. 6, NO. 1, JANUARY 1995, pp.
237-238 The Geometrical Learning of Binary Neural
Networks, Jung H. Kim and Sung-Kwon Park

[18]Neurocomputing 57 (2004) 455 – 461
An approachfor construction of Boolean neural
networks based on geometrical expansion, Di Wang. ,
Narendra S. Chaudhari, N.R. Pal and M. Sugeno
(Eds.): AFSS 2002, LNAI 2275, pp. 236–244, 2002.
[19]Optimal Synthesis Method for Binary Neural

Network Using NETLA, Sang-Kyu Sung1, Jong-
Won Jung1, Joon-Tark Lee1, Woo-Jin Choi2, and
Seok-Jun Ji3

**REFERIR NA SEC ‘You may say…’:
[20]IEEE TRANSACTIONS ON NEURAL
NETWORKS. VOL. 5 . YO. 3. MAY 1994 507-508
An Iterative Method for Training Multilayer Networks
with Threshold Functions, Edward M. Corwin,
Antonette M. Logar. and William J. B. Oldham
[21]Recursive branching network
Al-Mashouq,K.A.;Systems, Man, and Cybernetics,
1997. 'Computational Cybernetics and Simulation'.,
1997 IEEE International Conference on Volume 2, 12-
15 Oct. 1997 Page(s):1341 - 1344 vol.2

[22]Backpropagation algorithm for logic oriented neural
networks, Kamio, T.; Tanaka, S.; Morisue, M.;
Neural Networks, 2000. IJCNN 2000, Proceedings of the
IEEE-INNS-ENNS International Joint Conference on
Volume 2, 24-27 July 2000 Page(s):123 - 128 vol.2
[23]A multi-core learning algorithm for Boolean neural
networks, Wang, D.; Chaudhari, N.S.;
Neural Networks, 2003. Proceedings of the International
Joint Conference on Volume 1, 20-24 July 2003
Page(s):450 - 455 vol.1
[24]A simple learning of binary neural networks with
virtual teacher signals, Shimada, M.; Saito, T.;
Neural Networks, 2001. Proceedings. IJCNN '01.
International Joint Conference on
Volume 3, 15-19 July 2001 Page(s):2042 - 2047 vol.3
Referir na introdução:*
[25] Neurocomputing 47 (2002) 161–188 New methods
for testing linear separability, M. Tajinea;., D. Elizondob

Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 15-17, 2006 (pp64-69)

