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Abstract: - We show in a constructive way the universality of a two layer perceptron. We show how to build any 
minterm of any logical function with one perceptron and how to build the OR of all the minterms with another 
perceptron. This way it is possible to implement a logical function with N minterms with a two layer perceptron 
with N+1 perceptrons. Next we addres the question of minimizing the number of perceptrons or threshold 
elements to implement a given logical function. Here we have to answer to two open questions that have not yet 
answered in the literature:1) Is the logical function linearly separable? 2) If the logical function is linearly non-
separable how to minimize the number of perceptrons or threshold elements to implement the logical function? 
If we know that the logical function is linearly separable it can be implemented by one perceptron trained with 
the Rosenblatt’s Perceptron Learning Rule [1]-[2] that guarantees convergence in the case of the existence of a 
solution. We propose as a test of linearly non-separable logical function the Perceptron Learning Rule did not 
converge after a very great number of epochs or iterations. As a method of minimization of the number of 
perceptrons or threshold elements to implement a linearly non-separable function we propose a trial and error 
procedure that generates all manners to implement the logical function with the mnimum number of perceptrons 
or threshold elements, and if for all of them the learning rule did not converge for all associations of minterms 
then we must increment the number of perceptrons and generate and test again all manners of implementation of 
the logical function till we got a solution. Finally we present some examples of linearly non-separable logical 
functions that we implemented with a minimum number of perceptrons or threshold elements. 
 
Key-Words: - Logical Function, Minterms, Linearly Non-Separable Logical Function, Perceptron Learning Rule, 
Methodology to Implement a Linearly Non-Separable Logical Function with the Minimum Number of 
Perceptrons or Threshold Elements. 
 
1 Introduction 

              This work arises as a consequence of one of our classes of 
Neural Networks where we show to our students that it is 
possible to implement any logical function, even linearly 
non-separable, with a two layer perceptron. Then at home 
we read what we have done and said to ourselves: 
‘Heureka! This is a new approach to Digital Design!’. 
Then we made some literature research and found that 
our idea is not original. In 1988 Yon B. Cho and 
Yoshiyasu Takefuji [3] developed complex logical 
circuits, including synchronous circuits, with only 
operational amplifiers, resistances and capacitors. More 
recently with the advent of VLSI and RTD circuit design 
the idea of implementation of logical functions based on 
threshold elements, which are nothing more than 
Rosenblatt’s perceptrons, have been developed and also 
very few design methodologies have been proposed [5]-
[10]. By the contrary there are a lot of proposals of 
methodologies to implement linearly non-separable logic 
functions with Rosenblatt perceptrons [11]-[25]. So why 
to propose one more methodology? Because our 
methodology guarantees always a minimum number of 

perceptrons or threshold elements. As a curiosity we 
found an old book published in 1971 about applications 
of Threshold Logic [4] that seems to ignore the works of 
Rosenblatt published in 1958 and 1961. Another curious 
fact is that Valeriu Beiu in [7] seems to ignore that the 
logical functions A>B and A≥B are linearly separable 
logic functions and so can be implemented by only one 
perceptron or threshold element and A=B may be defined 
by not(A>B) AND not(A<B). For example, for four bits 
words, we found after 15 epochs the solution  

 
W1=[16     8     4     1   -16    -8    -4    -3],  
 
b1=-1, 
 
departing from zero weights. In figure 1 we show the 
evolution of the accumulated error over one epoch using 
the Perceptron Learning Rule [1]-[2]. For the function 
A≥B we found after 13 epochs the solution  
 
W1’= [16     7     3     1       -16    -7    -3    -1],  
 
b1’=0. 
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Fig. 1- Accumulated error over one epoch for A>B for 
words of 4 bits length. We got one solution in only 15 
epochs, 15x256=271 iterations. 
 
And for 5 bits words we got the solution for A>B given 
by  
 
W2=[32 16 8 4 2 -32 -16 -8 -4 -3],  
 
b2=-1  
 
after only 21 epochs as you can see in figure 2. For the 
function A≥B we found   
 
W2’=[22    11     6     3     1   -22   -11    -6      -3    -1],  
 
b2’=0  
 
after only 8 epochs. 
 

 
Fig. 2- Accumulated error over one epoch for A>B for 
words of 5 bits length. We got one solution after only 21 
epochs, 21x1024=21504 iterations. 
 

And for 6 bits words we got the solution for A>B given 
by  
W3=[97 48 24 11 5 2 -97 -48 -23 -11 -5 -3],  
b3=-2  
after only 119 epochs as you can see in figure 3. For the 
function A≥B we found after 116 epochs the solution 
W3'=[100  49  25  12  5  3  -100  -49  -25  -12    -6    -4] 
b3’=2 
 

 
 
Fig. 3- Accumulated error over one epoch for A>B for 
words of 6 bits length. We got one solution after only 119 
epochs, 119x212 iterations, in about 26 minutes with the 
Matlab nntool over a PC with a clock of 1GHz. 
 
And for 7 bits words we got the solution for A>B given 
by  
W4=[195 98 49 24 11 6 2 -195 -98 -49 -24 -11 -5    -3], 
b4=-2  
after only 235 epochs as you can see in figure 4. 
 

 
Fig. 4- Accumulated error over one epoch for A>B for 
words of 7 bits length. We got one solution after only 235 
epochs, 235x212 iterations, in about 4 hours with the 
Matlab nntool over a PC with a clock of 1GHz. 
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For 8 bits we got the following  solution of A>B after 594 
epochs and about 3 days of runtime with matlab 7 over a 
Pentium IV with a clock of 3.6GHz,  
W=[427 213 107 54 27 12 7 3 -427 -213 -107 -54 -27 -12 
-5 -3],  
b=-3.  
It seems  that for any number of N bits the function A>B 
is linearly separable. Next we will show in a constructive 
way the following result: 
 
Theorem 1. The function A>B for words of any number 
of N bits is linearly separable. 
 
Is simple to verify that the perceptron with 
 
W=[48  24  12 6  3 2 -48  -24 -12    -6    -3    -1] 
b=-2 
 
implements the function A>B for words of 6 bits and also  
 
W=[96 48  24  12 6  3 2 -96 -48  -24 -12    -6    -3    -1] 
b=-2 
 
implements the function A>B for words of 7 bits, and so 
on, so this way we can construct any comparator of any N 
bits with only one perceptron, as we wanted to show. The 
general expression of the weight vector is  
 
W=[2N-4x6 2N-5x6 ... 6 3 2 -2N-4x6 -2N-5x6 ...-6 -3 -1] 
 
Of course there are much more ways to build a 
comparator with only one perceptron, but it is enough to 
find one general expression to prove theorem 1. Next we 
will show the following similar result: 
 
Theorem 2. The function A≥B for words of any number 
of N bits is linearly separable. 
 
Is simple to verify that the perceptron with 
 
W=[28  14   7    3     2  -28   -14    -7    -3    -1] 
b=0 
 
implements the function A≥B for words of 5 bits and also 
 
W=[56 28  14   7    3     2   -56   -28   -14    -7    -3    -1] 
b=0 
 
implements the function A≥B for words of 6 bits, and so 
on, so this way we can construct any comparator of any N 
bits with only one perceptron, as we wanted to show. The 
general expression of the weight vector is 
 
W=[2N-3x7 2N-4x7 ... 7 3 2 -2N-3x7 -2N-4x7 ...-7 -3 -1] 

 

   Nevertheless it remains two open questions to be 
answered satisfactorily:          
    1) How to Identify a Linearly Non-Separable Logical 
Function?  
    2) How to Minimize the Number of Perceptrons or 
Threshold Elements to Implement a Linearly Non-
Separable Logical Function? 
     In section 2 we make the constructive demonstration 
of the universality of a two layer perceptron, in section 
3 we enunciate our methodology to minimize the 
number of perceptrons or threshold elements to 
implement a linearly non-separable logical function and 
in section 4 we apply it to some simple linearly non-
separable logical functions and finally in section 5 we 
present our conclusions and possible research vectors 
that may define the direction of our future work that 
surely will include the application of evolutionary 
computation techniques. 
 
2 Demonstration of Universality of a Two 
Layer Perceptron 
It is simple to show that any minterm with N1 positve 
variables, assuming that they only may be 0 or 1, and 
N2 negated variables can be implemented by a 
perceptron with weight +1 attributed to all positive 
inputs/variables and with weight –1 attributed to all 
negated inputs/variables and bias=-N1. And is also 
simple to show that a N input perceptron with all 
weights +1 and bias=-1 implements the logical OR of 
all the N input variables. 
     With these two types of perceptrons we may 
implement any N minterm logical function with N+1 
perceptrons. 
     Furthermore if the logical function is linearly 
separable it can be implemented by only one perceptron 
and its weights and bias obtained with the Perceptron 
Learning Rule [1]-[2]. If it is linearly non-separable in 
most cases we can make associations of minterms that 
result in linearly separable logical functions and so 
implement it with less perceptrons or threshold elements 
than N+1, N being the number of minterms of the 
lineraly non-separable logical function. 
 
3 Methodology to Minimize the Number 
of Perceptrons or Threshold Elements 
 
To our knowledge nobody before us did solve this 
problem of minimizing the number of perceptrons or 
threshold elements to implement a linearly non-
separable function. 
    First we must identify a linearly non-separable logical 
function. We consider that if after 100 million of epochs 
the algorithm of Perceptron Learning Rule [1]-[2] did 
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not converge then the logical function is considered 
linearly non-separable. 
    Next if the logical function seems to be linearly non-
separable then we must begin to generate all the 
possible minterm associations that can be implemented 
by two perceptrons, i.e., to group the minterms in two 
associations, test for each manner to realize this 
grouping if the two logical functions are linearly 
separable and if for all the possible manners to group the 
minterms in two perceptrons they did not converge then 
we must go to the hypothesis of grouping the minterms 
in three perceptrons or threshold elements and so on, till 
we find a solution. 
   This methodology seems simple but for a linearly non-
separable logical function with a lot of minterms it will 
take a lot of computation to find a good solution. In the 
near future we will try to improve this methodology in 
terms of its runtimes. 
 
4  Three Examples of Application 
The 3 variable logical function f=m1+m2+m6+m7 seems 
to be linearly non-separable but the association of the 
following minterms is a linearly separable logical 
function f2=m2+m6+m7 and it remains only m1. So f2 
could be implemented by the following perceptron 
W=[-2     4     2] and bias=-4 and m1 by W=[-1   -1    1] 
and bias=-1. Even for this simple example this took 
about 2h in a PC at 1GHz. 
    Another more complex example of a 3 variable 
logical function that seems to be linearly non-separable 
is f=m0+m1+m2+m4+m6+m7, with 6 minterms. After 
about 8h of computation we found the following optimal 
solution: f2=m0+m1+m2+m4 and                    f3=m6+m7 
that could be implemented by               W2=[-1    -1    -
1], bias2=+1 and W3=[0     1     2], bias3=-3. 
    Finally for the following four variable logical 
function with eight minterms, 
f=m0+m1+m5+m6+m8+m9+m14+m15,  that seems to be 
linearly non-separable, we found that f1=m0+m1+m8+m9, 
f2=m6+m14+m15 and f3=m5 are linearly separable and may 
be implemented by three perceptrons with weights 
W1=[0 -2 -2 0], b1=0,                  W2=[-3 4 6 3], b2=-10, 
W3=[1 –1 1 –1], b3=-2, respectively. This way this 
complex function could be implemented only by 4 
perceptrons or threshold elements.   

 
 
Fig. 5- Evolution of accumulated error over one epoch for 
function f1. In only 4 epochs we got one solution. 

 
 
Fig. 6- Evolution of accumulated error over one epoch for 
function f2. Although with less minterms we got one solution 
only after 29 epochs or 29x16=464 iterations. 
 
    It seems that the main drawback of our methodology 
is its bad runtimes and the evolutionary computation 
techniques may have a word to say in its improvement. 
 
5 You May Say… 
Of course we may solve these problems with sigmoides 
in the first layer and a linear neuron in the second layer 
and then use the backpropagation algorithm. 
    For the third example of the previous example with 
only three sigmoides we got a very good approximation 
after 1000 epochs (see figure 6) and the weights and 
bias of the first layer were  
W1= [0.016061 10.9542    -10.9542          -0.01518 
        -13.5412    14.0067       0.00015162  13.6972 
          -5.8865   -25.3245     25.3248            5.8302] 
bias1

T=[ 0.28408  14.4743  5.5862] 
and the weights and bias for the linear neuron were 
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W2=[1.7643 -3.5428 1.7643], bias2=1.7785, for a 
random initialization of the weights and bias. After only 
1000 epochs we got a mse as low as 3.5 10-13. 
 

 
 
Fig. 7 Evolution of mse versus the number of epochs using 
standardd backpropagation. 
 
 
   So with only 4 neurons, 3 sigmoides and one linear 
neuron we could make the same function that was 
implemented with 4 perceptrons in the previous section. 
Nevertheless it is much more difficult to implement a 
good sigmoidal neuron than a perceptron with hardware 
and to implement fractional or real weights than integer 
weights. 
   It would be nice if we can force big absolute values in 
the weights and bias to facilitate the translation from a 
sigmoidal network to a perceptron network. For 
example, from the two variable XOR solution with a 
two layer perceptron,  
W1=[1 -1 
        -1  1]   
bias1

T=[-1  -1] 
W2=[1 1], bias2=-1, we got the sigmoidal network 
(sigmoides in the first layer and a linear neuron in the 
second layer) defined by 
W1=[200  -200 
       -200    200] 
bias1

T=[-100 -100] 
W2=[1 1], bias2=0. 
 
 
6 Conclusions and Future Work 
Our methodology of identifying and implementing 
linearly non-separable logical functions with a 
minimum number of perceptrons or threshold elements 
is very simple but has two big drawbacks:  1) We are 

never sure if our logical function is really linearly non-
separable; 2) Its exhaustive search from the possible 
ways to associate the minterms turns it very slow and 
for more than 6 minterms the runtimes tend to be very 
big (more than 10h for a PC at 1GHz). 
    In the near future we are planning to compare our 
algorithm to the few published in the literature of VLSI 
design [5]-[10], and to the numerous published in the 
literature of Neural Networks journals and conference 
proceedings [11]-[25] based on a test set of complex 
linearly non-separable logic functions. 
    A possible way of evolution of our work is to try to 
implement our methodology with the aid of 
evolutionary techniques to improve its runtimes. 
Nevertheless there are a lot of difficulties to implement 
this approach namely the definition of a good fitness 
function that will rank the population of candidate 
solutions by their separability, i.e. how far the 
associations of minterms are from linearly separable 
logical functions and the number of perceptrons or 
threshold elements necessary to implement them. 
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