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Low complexity Linear Decomposition at the Disjoint Cubes Domain
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Abstract :- Linear decomposition proved to be efficient technique for reducing the number of terms and literal
of two-level implementation of logic functions. The decomposed system consists of linear function followed by
nonlinear function of minimal realization cost. The complexity of determining the linear part makes this approach
inapplicable for systems of large number of inputs when represented by truth table or decision diagrams. This
paper presents a method for linearization of systems represented as a set of disjoint cubes. The reduction in com-
plexity is achieved by a) calculation of the autocorrelation function on the disjoint cubes domain; b) representing
the linear part as a superposition of linear transforms of a special form. Experimental benchmark results allow
comparing the proposed technique with known linearization methods, and show the high efficiency of the proposed

approach.
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1 Introduction

The linear decomposition is a well known tech-
nique that allows implementation of a logical function
f: GF(2") — GF(2F) as a superposition of a linear
transform function o followed by a non-linear part, f,,
( figure 1). The linear part is implemented by XOR
gates and f, is typically implemented as two-level (or
multi level) with a complete set of gates, e.g. AND-
OR-NQOT. For systems of large number of inputs the
linear part has negligible effect on the synthesized cir-
cuit size, while the number of terms and literals of lin-
earized function f,, can be orders of magnitude smaller
than the original system. The optimization problem is
to find a linear transform o such that the corresponding
fo has low realization cost.

The cost measure for linearization, denoted by
w(f), is the number minterm-pairs of Hamming dis-
tance one for which the function outputs are equal. p
equals to the sum of the autocorrelation function R(7)
atT = 2,4 =0,1,...n — 1. The linearization prob-
lem as defined by Karpovsky [5] is to determine a set

of independent 7’s for which the sum autocorrelation
values is maximal, this set defines o.

The complexity of linearization procedures lies in
the calculation of the autocorrelation function and in
constructing a set of independent 7’s; For systems of
large number of inputs it is impossible to calculate R
at the truth table domain nor over decision diagrams.
In these cases, calculations over disjoint cubes have to
be used since it allows processing separately each cube
or cube pair.

R can be calculated directly according to its defini-
tion, or using the Wiener-Khinchin theorem. Extensive
work has been done in spectra calculations of switch-
ing functions defined by disjoint cubes [2, 3]. How-
ever, employing this approach for calculation of R us-
ing the Wiener-Khinchin theorem may be inefficient.
Another method for calculation of R on the disjoint
cubes is a tabular technique introduced by Almaini et
al. [1]. A spectral interpretation of tabular techniques
for fixed-polarity Reed-Muller expressions in terms of
the correlation on finite dyadic groups was proposed in
[6]. However, this approach works on minterms rather



then on cubes, and thus the complexity depends on the
number of minterms the cubes cover.

A linearizarion algorithm for efficient minimization
of logic functions on the disjoint cubes domain was
suggested by Varma and Trachtenberg [7]. The au-
thors calculate R(7) directly, according to its defini-
tion. This method may not produce the maximal p
since the final set of 7’s depends on the order of pro-
cessing the cubes and on the subspace defined by 7’s of
previous produced cubes. Moreover, the transformed
function f, is obtained from o by applying the lin-
ear transform on the cubes. When the cubes are not
minterms the linear transform may break a cube into
a number of cubes of smaller order; obtaining these
smaller cubes is not straightforward.

Recently an algorithm for linearization of decision
diagrams by using the autocorrelation function was
proposed by Karpovsky et al [4] and known as K-
procedure. The procedure reduces the average size of a
Binary Decision Diagram (BDD) by applying a linear
transformation o on the input variables. The algorithm
solves the problem of determining an independent set
of 7’s by performing a linear transform and folding the
function after each step. However, it may be impracti-
cal for functions of many input variables.

In this paper, we suggest an algorithm for linear
decomposition of a multi-output system at the dis-
joint cubes domain. The proposed algorithm calcu-
lates the autocorrelation function for several 7’s simul-
taneously by defining the the subspace determined by
the nonzero values of cross correlation of two cubes.
To reduce complexity the Hamming weight of 7 is re-
stricted. In practice, 7’s of the Hamming weight up
to three give the same results as without the restric-
tion. By defining o as a product of simple matrices, it
is possible to calculate f,, by steps and to simplify the
construction of the set of 7’s. The complexity of the
algorithm is polynomial in the number of inputs and
number of cubes, (O(n*N?)), where N is the number
of products. Therefore the new method is efficient of
systems for large number of inputs and moderate num-
ber of cubes, N? < 27 /n2.

The paper is organized as follows. Section 2 con-
tains mathematical background. The linearization pro-
cedure at the disjoint cubes domain is presented in sec-
tion 3. Section 4 describes in details the calculation of
the autocorrelation. In section 5 show that the effect
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of restricting the Hamming weight of 7 is negligible,
then we compare the performance of K-procedure at
the truth-table domain to the new linearization method
in terms of the cost function ; and execution time, and
show the significant improvement in execution time.
The conclusions summarizing the results are presented
in Section 6.

2 Mathematical background

2.1 Definitions

Let f : GF(2)" — GF(2%) a system of k logic
functions of n variables or Multioutput Logic Func-
tion. Let G = {0, 1, ¢} , where ¢ stands for don’t-care.
The representation of f at the cubes domain is a set of
N pairs

where P; € G", is a product and Y; € GF(2F) is the
corresponding output.

Two cubes are called disjoint if they do not have any
minterm in common. If any pair of cubes is disjoint
the function is said to be of a disjoint cubes represen-
tation . Clearly any non-disjoint set can be expanded
into a disjoint set, and therefore without loss of gener-
ality, we assume that the system consists of N disjoint
(orthogonal) products.

The products of a multi-output logical function can be
partitioned into sets having identical output pattern,
called characteristic sets. The characteristic set, F,,
(u € GF(2F),) is the set

By ={(P,Yi)|(P,Yi) € B Y; =u} (1)

The switching function defined by the characteristic
set I, is the characteristic function f, ().

2.2 Optimization criterion

In this paper we measure the realization complex-
ity of a system by u(f). u(f) counts the number of
adjacent minterms having the same output,

As shown in [5], the complexity measure u(f) can
be written in terms of the autocorrelation function val-
ues at 7’s of Hamming weight one; Denote by R,(7)
the autocorrelation function of a binary function g,



Ry(7) = Xvear(an) 9(x)g(z + 7), then
p(fu) = Y Ru(r)
lIrll=1

where ||7|| is the Hamming weight of 7 and pu(f) =
2 uear (k) H(fu)

2.3 Linear decomposition

The linear decomposition of a function, presented
in [5], allows implementation of f as a superposition
of a linear transform function o implemented by XOR
gates followed by a non-linear part, f,,

f({I?) = fa(ax)v

of minimal implementation complexity as sum of
products (see figure 1).

X — 3 f(x) 5 YEIX)

X — o - fo(x)
X=oX

Figure 1: Linear Decomposition

The optimization problem is to find for a given func-
tion f, a nonsingular (n x n) linearization matrix o,
such that u(f,) is maximal.

The autocorrelation functions of f(z) and f,(z)
carry the same values but in a different positions, i.e.
Ry(7) = R(0~17). Therefore, the minimization prob-
lem is to determine a nonsingular matrix o = T,
T = (Tp—1,...71,70), such that pu(f,) = >, R(7;) is
maximal.

3 Linearization Algorithm

The complexity of linearization algorithms lies in
the calculation of the autocorrelation function and the
construction of the set {7;}7~".

The k-procedure presented in [4] provides a deter-
ministic greedy algorithm for BDD minimization of
the number of nodes at each level. Karpovsky et al.
addressed the complexity of the constructing the set of

LY== fe(oX)
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A: Decomposition of o in K-procedure

X — —> —
X1 — —> —
X2 —3 o o | o — bx) ——
Xog — : Y=to(oX)

B: Decomposition of o at the disjoint cube domain

Figure 2: Decomposition of o

7; by folding the binary tree and by constructing ¢ in
steps. This can be referred as a superposition of ma-
trices o; of decreasing degree, figure 2-A. Folding en-
sures that the 7; vector derived at step 7 is independent
in previous 7’s and therefore the overall linear trans-
form matrix o is nonsingular.

This approach is not applicable at the disjoint cubes
domain since folding be done only by expending the
cubes into minterms. For cubes of high order it is not
practical. Instead, it is possible to represent the linear
transform matrix o as a product of n/ matrices n’ < n,

0 =0p/'—1"""0100;,

as shown in figure 2-B. The matrix o; is called an
instantaneous linearization matrix of step 7. Equiva-
lently, T' = Ty} - - - Ty 1, where 0;T; = I. The ma-
trix T; = (tp—1,...,t1, o) carries on its ’th column
the 7 vector derived at step i, of decimal value > 2°.
The right columns of 7T; correspond to 7’s determined
in previous steps, therefore, the decimal value of ¢;,
J < 4is 27. The remaining columns ¢;, 5 > ¢ are of
Hamming weight one and are determined such that 7
is nonsingular.

Decomposition of ¢ into product of matrices of this
special form is essential for two reasons; To simplify
the search for the next 7 by an instantaneous lineariza-
tion of the set of products and the simplicity of calcu-
lation of the linearized set of cubes.

To reduce complexity of the calculation of the au-
tocorrelation function, it is calculated only for 7’s of
Hamming weight less or equal w. In practice (see sec-
tion 5), 7’s of the Hamming weight up to three give the



same results as without the Hamming weight restric-
tion. Thus about n? values of R are to be considered
for efficient linearization.

The following linearization procedure at the dis-
joint cubes domain results the linear transform matrix
o and a set of linearized disjoint cubes representing f,.

Disjoint cube Linearization procedure
Seto = I(n><n)

Seti =10

While: <n—1

1) Forall 7 € GF(2") , ||7|| € wand 7 > 271
calculate the autocorrelation R(7) as defined in
section 4.

2) If R(7) = 0 for all calculated 7’s then break.

3) Determine 7 that maximizes R(7)

4) Construct the matrix o;

5) Perform an instantaneous linear transform on the
set of products

6) Update o, 0 = g0

7) Increment ¢

|

4 calculation of the autocorrelation function
on disjoint cube domain

Let N, the number of products {P;}Y* associ-
ated with the Characteristic Set F), as defined by (1),
ZueGF(2k) N, = N. Since F' is an orthogonal set of
products, so does N, and thus f,(z) = ZN“ Pi(z)
and

u u
=0 =0 ¢

2
EGF(

(2n) 1=0 j7=0

To simplify the notations, when it is clear form the

)

context we omit the u, i.e. instead of RZ(Z
R; ;.

There is no need to go over all the z’s for calculating
the correlation function R; ;(7), it can be computed
directly by comparing the products as shown below;

For a product P; = (pg))l, .,p(1 D) ) € G" de-
note by n, the number of symbols of P that carry

don’t care. It is well known (see e.g. [5]) that for any

we write

i (x+T) iiRw
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7 of the form (7,1, ...

(1) _
%:{¢ W =

,T1,Tp), Where

0 otherwise

(k = 1,2,...n — 1) the autocorrelation R;;(7) of
P;(z) equals 2™¢ and is zero elsewhere.
For two products P; and P; € G" denote by pg) and

p,(cj ) the k’th symbol of P; and P; respectively. There
are nine ible (p\”, p¥)) pai i
possible (p,.’, p;’) pair types, i.e.

(@ () Ty :(0’0)7T2:(071)7T3:(0a¢)a

(2
(pk 7pk] ) € T4 = (1 0) T5 = (1 1) T6 (1 ¢),

=(¢,0),Ts = ($,1), Ty = (¢, 9)

Letni,ng,...ng stand for the number of pairs of each
type,

— kI, ) =T} 1=1,2...9.

For example, if P; = (0¢11¢¢) and P; = (0041¢¢)
then n; - the number of times the pair (0,0)
appears is one. ng = 0 since there is no posi-
tion where p](;) = 0 and pg) = 1. Similarly,
ny =0,n4 =0,n5 =1,ng =0,n7 = 1,ng = 0 and
ng = 2.

Theorem 1 Let P; = (pg)_)l, .. ,pgz)) (@ ))) and Pj =
(p(J)) p( '))p( ]
n—17""

of pairs (p,(;), pk ) of type Ty. For any T of the form

) € G". Denote by ny the number

(Tn—1y--.,71,70), Where
0 @9ﬂ%6ﬂh%}
Tk =19 1 (p,ﬁ),pi ) €{T, Ty}
¢ otherwise
(k =1,2,...n — 1,) the cross-correlation R; j(T) of

P;(z) and Pj(x) equals 2"¢ and is zero elsewhere.

Example 1 Consider the following four products

(Oa0a¢a¢) P3 = (LO,QZS,O)
(071717¢) P4 = (1,1,1,1)

P =
P =

Consider P3 and P,. The corresponding pair types are
(T5,T>,Ts, T5) and the T pattern for which the cross-
correlation R3 4(7) is not zero is (0,1, ¢, 1). The value
of R34 at these 7’s is 20 =20 = 1.



The table below shows the T’s for which R; ; is not
zero,

Tij | 1 2 3 4

1 1(0,0,0,9)

2 (0’ 17 ¢7 ¢) (07 07 07 ¢)

3 1(1,0,¢,9) (1,1,9,¢) (0,0,¢,0)

4 |(L,1,¢,¢) (1,0,0,¢) (0,1,¢,1) (0,0,0,0)

Clearly each T may appear only once at each column
and each row. Therefore R(T) is the sum of at most
four R; ;’s.

The value of the non-zero elements of R; ;(7) is

Rij|1 2 3 4
1 |4
2 |2 2
3121 2
4 1111

For example R(2) = R(0010), the pairs that their cor-
relation is not zero for the pattern 0010 are (i,j) =
(1,1),(3,3), and hence R(2) = Ry, 1+ R33 = 4+2 =
6.

S Experimental Results

In this section we provide simulation results on sev-
eral benchmarks. The performance of the suggested
linearization algorithm is examined in terms of the cost
function and run time. The performance is compared
to the original function and to the linearized function
after applying k-procedure at the truth-table domain.

Table 1 shows that restricting the Hamming weight
of 7 to be less or equal to w, doesn’t degrade the per-
formance significantly. This justifies the use of w = 3
when comparing the performance in terms of p and
run time to the K-procedure.

benchmark | n k| w=1 2 3 5 7
sqrt8.pla 8 4| 1164 1284 1268 1286 1286
radd.pla 8 5 824 1304 1304 1304 1304
root.pla 8 5 868 932 940 958 958

Table 1: Cost function y versus the restriction w on the
Hamming weight of 7. The p of the original function
equals to the p calculated with w = 1.

Table 2 shows the cost functions for standard bench-
marks. The value of the original function is denoted
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Benchmark | n | & [ Hk—proc | PDCD Hup
radd 8 |5 | 1088 1494 1524 | 1914
root 8|5 1224 1224 1308 | 1904
mlp4 8| 8| 616 616 642 958
f51m 8| 8| 858 1050 1210 | 1568
adr4 8|5 | 1228 1328 1390 | 1718
dc2 8 |7 | 1066 1066 1150 | 1568
clip 9151 2490 | 3092 3208 | 3816

Table 2: p of the original and linearized benchmark
functions and upper bound on p

by p. piypp is an upper bound on cost function, it is
defined as the sum of the n maximal values of the au-
tocorrelation values. This bound is not always achiev-
able. The costs ji_proc and ppcp were obtained by
the k-procedure and the new method with w = 3, re-
spectively.

Figure 3 shows the execution time of the K-
procedure a the truth-table domain and the proposed
method versus the number of inputs. The execution
time was measured on Intel-Centrino, 1.2Ghz, 0.99GB
RAM, for random PLA’s of four outputs and 50 prod-
ucts. The variance of the measurements was less than
3%. It is clear that linearization at the disjoint cubes
domain outperforms linearization based on Wiener-
Khinchin theorem.
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Figure 3: Execution time versus number of inputs of
K-procedure and Disjoint cubes linearization alg. for
random PLA of 4 outpus and 50 products.

Figure 4 shows the execution time of the lineariza-
tion procedure with w = 3 for random PLAs of 10 to
50 inputs and four outputs with 25,50 and 100 prod-
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Figure 4: Execution time of Disjoint cubes linearization
procedure versus the number of input variables for random
PLA of 4 outputs and 25,50 and 100 products.

ucts. As expected the complexity is polynomial with
the number of cubes (IN?), and from the slop of the
curves it is clear that the complexity is increasing as
n* with the number of inputs and not exponentially
(n?2™) as the complexity of the calculating 7 times
the autocorrelation function by the Wiener-Khinchin
theorem.

6 Conclusion

Linear decomposition proved to be an effective tool
for reduction of the realization cost of a system. The
present work may be considered as a natural continu-
ation of the [7] and [4] for functions of large number
of inputs represented in disjoint cubes form. The main
contribution of the paper can be summarized as fol-
lows:

1. It proposes a method for calculating the autocorrela-
tion function for a logic function defined by its disjoint
sum of products.

2. It describes a technique for simplifying the con-
struction of the set of n independent vectors of high
correlation that define o, by representing o as a prod-
uct of matrices of a special form.

The proposed technique is checked by using a set of
standard benchmarks. The experimental results clearly
demonstrate efficiency of the proposed techniques.
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