
The problem of signal denoising for detecting the presence of spikes  
 

VINCENZO NIOLA  
Department of Mechanical Engineering for Energetics 

University of  Naples “Federico II” 
Via Claudio, 21 - 80125 Napoli  

 ITALY 
  http://niola.dime.unina.it   

 
ROSARIO OLIVIERO  

University of  Naples  “Federico II” 
Via Pansini 5, 80131, Napoli   

ITALY 
 

GIUSEPPE QUAREMBA 
University of  Naples “Federico II” 
Via S. Pansini, 5 – 80131 Napoli 

ITALY 
 

 
Abstract: - A Self Learning Neural Network was designed to perform the denoising of signals and to detect the 
anomalies superimposed to signals obtained mathematically from sinusoidal functions. The ability of the network 
to perform a good denoising process was tested by adding random white noise to the original signals. The 
performance of the denoising process was evaluated by decomposing orthogonally the spiked and noisy signals by 
means of the wavelet transform, of which the ability of investigating on such anomalies is well known. 
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1     Introduction 
     Nowadays, one of the most important requirement 
from a dynamical point of view is the high 
performance of any mechanical system operating in 
extreme dynamical conditions [1]. 
     In order to prevent these kind of problems and to 
face these challenges, several test bed, numerical 
simulations and mathematical models have been 
proposed in the last years. They are the basis for the 
development of new methodologies useful both for 
understanding the phenomena representing the main  
limit of mechanical system and  for developing new 
and more reliable predictive test for diagnostics. 
     The present work proposes a method to detect the 
existence of spikes that usually are generated in a 
mechanical system by fatigue crack. The importance of 
revealing the presence of such anomalies also in  
presence of noised signals is fundamental, today, in 
order to prevent mechanical failure and to improve the 
reliability of dynamical systems. Starting from these 
considerations some mathematical functions were 
developed in order to simulate the dynamical response 
of a mechanical system.  Then a neural network was 
designed in order to perform an intelligent and soft 
denoising of signals, to which a white random noise 

was superimposed for simulating real operating  
conditions. It will be shortly described. Finally, the 
neural output was analyzed by means of wavelet 
transform for detecting the presence of anomalies 
usually known as spikes. 
 
 
2    A Mathematical and Fuzziness 
overview  
 
 
2.1     Discrete Wavelet Transform 
     Mother wavelets are special functions, whose first h 
moments are zero [2]. Note that, if ψ is a wavelet 
whose all moments are zero, also the function ψjk is a 
wavelet, where 
 

)2(2)( 2/ kxx jj
jk −= − ψψ  .    (1) 

 
     Wavelets, like sinusoidal functions in Fourier 
analysis, are used for representing signals. In fact, 
consider a wavelet ψ and a function φ (father wavelet) 

such that { }{ }0j kϕ , { }jkψ , k ∈  Z, j = 0, , 2,…} is a 
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complete orthonormal system [3],[4]. By Parseval 
theorem, for every signal  s∈  L2(R), it follows that 
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     In particular, the decomposition of signal s(t) 
performed by means of the Discrete Wavelet 
Transform (DWT) is represented by the detail function  
coefficients djk = <s, ψik> and by approximating scaling 
coefficients >=< kjkj sa

00
,ϕ . Observe that djk can be 

regarded, for any j, as a function of k. Consequently, it 
is constant if the signal s(t) is a smooth function, 
having considered that a wavelet has zero moments. 
Lemma 5.4 in [5] implies the recursive relations 
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where λ = (–1)k+1h1-k; { hk, k ∈  Z} are real-valued 
coefficients such that only a finite number is not zero 
and they satisfy the relations 
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 The sequence of spaces  { },jV j∈Ζ , generated by φ is 

called a multiresolution analysis (MRA) of L2(R) if it 
satisfies the following main properties 
 
     1,j jV V j+⊂ ∈Ζ  and 

0
j

j

V
≥
∪  is dense in L2(R). 

 
It follows that if { },jV j∈Ζ , is a MRA of L2(R), we 

say that the function φ generates a MRA of L2(R), and 
we call φ the father wavelet. 
The relation (2) is also called a multiresolution 
expansion of s. This means that any s ∈ L2(R) can be 
represented as a series (convergent in L2(R)), where 

ka  and jkd are some coefficients, and { },jk kψ ∈Ζ , is 

a basis for jW , where we define  
 

1 ,j j jW V V j Z+= − ∈ . 
{ })(tjkψ  is a general basis for jW . The space jW is 
called resolution level of multiresolution analysis. In 
the following, by abuse of notation, we frequently 
write “resolution level j” or simply “level j”. We 
employ these words mostly to designate not the space 

jW itself, but rather the coefficients jkd and the 

function jkψ  “on the level  j”. 
Furthermore, mathematical functions were used for 
generating the data to be analyzed both in the case of a 
new mechanical system and in the case of cracked one. 
As an example of such functions is reported below. 
The function generating two spikes is as follows 
 

0.2 0.4( ) (4 ) 0.9 10 1.2 11y t sin t t t= + − − −  (7) 
 
where t ∈ [0, 20] (i.e., 2001 values). It simulates the 
response of a mechanical system when fatigue cracks 
are present.  
The target  signal (see next paragraph) is obtained by 
considering 
 
s1(t) = 10| t − 7|0.2 
 
and 
 
s2(t) = 1.2| t − 11|0.4 
 
where t ∈ [0, 20] (i.e., 11 values). Therefore we 
consider the signals y1(t) and y2(t), composed by 2001 
points, obtained by cubic spline interpolation of s1 and 
s2, respectively. 
Finally, we consider the smooth approximation z of y 
as follows 
 
z(t) = sin (4t) + y1(t) −  y2(t).    
 
Several tests were performed with different functions.  
It is important to note that, in accordance with the  
signal processing theory, the wavelet analysis, of 
course, was applied by ignoring the transient part due 
to the convolution between the signal and filter, which 
is located at beginning and at the end of convolution 
process.  
 
 
2.2     A brief description of  Neural Network: The 
Multilayer Perceptron 
The perceptron can be thought like a net composed of 
elementary processors organized in such a way to 
recreate the biological neural connections. It is able to 
learn, to recognize and to classify signal in 
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independent way. Observe that the nodes of two 
consecutive levels are connected by one link (or 
weight) but no connection exists among nodes 
belonging to the same level. The level where the nodes 
of input are present is named input layer, while the 
level which shows the output is said output layer. The 
layers which lies between the input and the output 
layers are named hidden layers[6][7]. 
The output of nodes of one layer is transmitted to the 
correspondent nodes of the following layers by means 
of links (weights) which can amplify, attenuate or 
inhibit such output through weighted factors. With the 
exception of nodes of the input layer, the total  input 
for each node is the sum of the weighted output of  
nodes belonging to previous layer. Each node is 
activated in agreement with the input received  from 
both the other nodes and the activation function. The 
total input of the i-th node of one layer is 
 

i ij j
j

I w o=∑      (8) 

where jo  is the output of  j-th neuron of the previous 

layer and ijw is the weighted link between the i-th node 
of one layer and j-th node of the previous layer. 
The output of the i-th node is 
 

( )i io f I=  
 
where )(⋅f is the activation function. Generally the 
activation function is sigmoidal as shown in Fig.1. 
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Fig.1 Sigmoidal activation function 
 
The function is symmetrical around ϑ  and 0ϑ  
controls the degree of steepness of the activation 
function (i.e., value of threshold / bias). In our 
application the activation function was set as follows 
 

πσ

π
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ef
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=⋅                          (9) 

 

where X  and σ  were the mean and the standard 
deviation respectively of the values of the nodes 
selected by the neighbourhood system. 
During the training set, the signal X={xi} was 
submitted as input to the net, where xi is the i-th 
component of vector X. In general, the output { }io  is 

not the same if compared with the target  it . For  a 
specific target the  error can be estimated as 
 

2)(
2
1∑ −=

i
ii otE . 

 
The procedure, in order to learn the correct set of 
weights, is to vary them in such a way that E is 
minimized as quickly as possible. From a 
mathematical point of view this means that gradient of 
E must be negative [8]: 
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Since E can be calculated directly on the output layer, 
the variation of weights for the links connected to the 
output layer is 
 

( )'ji j i
j

Ew f I o
o

η
 ∂  ∆ = − ⋅  ∂   . 

In particular, if  
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Finally, we have 
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for  the output layer and other layers, respectively.  
The greater value of η , the quicker is the learning but 
it should procure strong oscillations in the response. 
For that reason the last relation can be modified as 
follows [9] 
 

( 1) ( )ji j i jiw t o w tη δ α∆ = + = ⋅ ⋅ + ∆
 

 
where the term  ( 1)t +  is used in order to indicate the 

time ( 1)tht +  and α is a constant of proportionality. 
The neighborhood system d

ijN , for a vector of N 
values and a generic element, is defined as 
 

( ){ },d
ijN i j L= ∈

 
 
such that 
 
( ), d

iji j N∉  
 
( ), ( , )d d

ij klk l N i j N∈ ⇒ ∈
 

 
For 6d = , then 6

ijN  can be obtained by considering 
the 6 values like in Fig.2. 
 
 

6 3 1 (i,j) 1 3 6 

 
Fig. 2 Neighborhood system 
 
 
2.3   The SLNN Architecture 
The SLNN was developed by constructing 3 layers.  
Each layer has N neurons (the length of the signal).  
Each neuron corresponds to one value. Between the 
input and output layer  there exists one layer indeed. 
The neurons belonging to the same level do not have 
any link between them. Each neuron of one layer is 
connected to the correspondent neuron of the previous 
layer and to its nearest neurons. Moreover, each 
neuron of the output layer, is connected to  the 
correspondent neuron of the input layer. 
The input to a neuron belonging to the input layer is 
given from a real number in the range [ ]0,1  

proportional to the correspondent value of processed 
signal. Since we are interested to eliminate the noise 
and to extract the original spiked signal, all the 
weights, initially, were put to be equal to 1. The value 
assigned to ϑ ,  used in the activation function, was  

/ 2lnϑ = , where ln is the number of  neighbor neuron. 
In the Fig. 3 is depicted the scheme of neural 
multilayer architecture. 
 

 
Fig.3 Scheme of neural multilayer architecture  
 
The input value iI  for each neuron belonging to the i-
th layer (except the input layer) was calculated through 
(8). 
The goal is to obtain as output, the greatest number of 
neurons, set from 0 to 1, proportional to the target (i.e., 
spikeless) signal. Therefore we will say that the state 
of the output level can be thought like a fuzzy set. The 
measure of fuzziness of such a set  can be considered 
like the error of instability of the entire system (i.e., 
neural network).  Therefore we can use the fuzziness 
value as a measure of the error produced by the system 
and use the back-propagation in order to adjust the 
weights until to eliminate the error (fuzziness).  The 
measure of E can be adopted as a meaningful function 
of fuzziness index 
 

( )E g I= , 
 
where I is the measure of fuzziness of a fuzzy set.  
After a first adjustment of the weights, the output of 
the neurons belonging to the output layer is used as 
feedback to the correspondent neurons belonging to 
the input layer.  In the same way the second iteration 
will proceed. The iteration of weight adjustment shall 
continue until the net becomes stabilized (i.e., the 
fuzziness error/index becomes minimum/negligible). 
When the net shall be stabilized, the state of output of  
neurons belonging to the output layer shall assume the 
values from 0 to 1 proportional to the target signal.  
The mathematical rules for the weight adjustment are 
the following (weight correction  by fuzziness linear 
index) [10][11] 
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Calculations were made using MATLAB 6.5, The 
MathWorks, Inc, Natick, Mass, Simulation Toolbox 
Version 2.1.2. 
 
 
3     Results 
     In order to check the effectiveness  of the proposed 
method, computer simulation has been done by 
generating spiked signals by (7) added with white 
random noise. The output signal obtained from the 
simulation was analyzed both  by the SLNN and the 
wavelet transform; a typical signal generated by the 
proposed simulation with the presence of two spikes 
due to the fatigue crack of a mechanical system, is 
shown in Fig.4. 
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Fig. 4 Simulated spiked signal (two spikes are  
indicated by arrows) 
      
To realize a more effective and reliable analysis of 
these kind of signals a random white noise was added 
to the original ones obtaining the signal depicted in 
Fig.5. 
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Fig. 5 Simulated output signal with random white 
noise added 

 
     It is impossible to distinguish any dynamics or 
features showed by the original signal. 
The target signal is showed in Fig.6. More detailed 
description of  neural steps is reported below. 
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Fig.6  Target signal 
 
     The first step was the feeding of the input layers by 
the signal of Fig.5. This signal was passed through all 
the three levels forming the net. The first iteration was 
named “net initializing”: all the weights of the links 
are equals to 1. The result of the first iteration is 
reported in Fig.7. 
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Fig. 7 Neural result for the noisy signal after the 1st 
iteration 

 
     The output was compared with the “target signal” 
(i.e., the expected signal of Fig.6) to which the net tries 
to fit the input signal. 
     The last signal shown is used by the net to adjust 
the weights of the links for the second iteration . The 
weights of the links modified as explained before 
followed a square error minimization index. 
     The net converged after ten iterations producing the 
results depicted in Fig.7. 
 

Fig. 7 Neural result obtained after the 10th iteration 
 

    If we process the signal depicted in Fig.5, by  
wavelet transform it is not so easy to distinguish the 
presence of spikes and their features (see Fig.8). By 
applying the SLNN, as pre-processing tool, the 
detection of two anomalies, from the starting noised 

signal of Fig.5, can be easily performed by wavelet 
transform [12], see fig.9. 
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Fig. 8 Result for the 6th-level wavelet decomposition 
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               Fig. 9 Wavelet analysis of the SLNN output 
signal 

 
As expected, note the presence of a consistent spike at 
t=1000. A minor spike is locate at t=900. 

 
 

4  Conclusions 
     A well designed Self Learning Neural Network 
(SLNN) should contribute to determine the presence of 
anomalies (e.g., spikes), due to fatigue crack in 
mechanical system, when they are of small entities. 
     Moreover, the present work constitutes the basis for 
a next experience based on the improvement of a test 
bed, in order to compare the results of the present work 
with the ones provided by a real model by applying the 
same methodology showed in this paper. 
     The importance to prevent such anomalies (i.e., 
fatigue crack) is fundamental for the regularity of 
functioning and yield of a mechanical system. The 
methodology should be implemented on that 
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machinery, working, usually, in extreme conditions of 
lubricating (e.g., high temperature, high speed, 
instantaneous speed changing, high power 
transmission, and so on). However the proposed 
methodology may be extended to the fields where 
important torsional and vibrational problems (e.g., 
navigation, automotive, etc.) are involved.  
     Normally, the signals are affected by noise, so it is 
fundamental to perform an intelligent and soft 
denoising process without the application of any filter. 
In fact, their application could suppress the presence of 
spikes (usually showing high frequency and small 
amplitudes) which reveal the potential mechanical 
damage. For that reason, in this work, a SLNN was 
designed in order to realize a reliable real time signal 
denoising, without the application of any digital filter.  
     The response performed by means of the 
application of Wavelet Transform is significative. In 
particular, it proves both the reliability of SLNN for 
such an application and, in conjunction with the 
wavelet analysis, the ability for detecting anomalous 
signals. 
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