
 1

Class-Component Testability Analysis

SUPAPORN KANSOMKEAT
Faculty of Engineering, Chulalongkorn University

Bangkok, 10330, THAILAND

JEFF OFFUTT
Information and Software Engineering

George Mason University
Fairfax, VA 22030, USA

WANCHAI RIVEPIBOON

Faculty of Engineering, Chulalongkorn University
Bangkok, 10330, THAILAND

Abstract: - Testability is a quality factor used to predict the amount of effort required for software testing and
to indicate the difficulty of revealing faults. This paper presents a quantitative testability analysis method for a
software component that can be used when the source program is not available, but the bytecode is (as in Java
.class files). This process analyzes the testability of each location to evaluate the component testability. The
testability of a location is analyzed by computing the probability that the location will be executed and, if the
location contains a fault, the execution will cause the fault to be revealed as a failure. This analysis process
helps developers measure component testability and determine whether the component testability should be
increased before the component is reused. In addition, low testability locations are identified.

Key-Words: - Software Testing, Software Testability, Testability Analysis, Bytecode, Mutation Analysis

1 Introduction
Testability is a quality factor that attempts to
predict how much effort will be required for
software testing and to estimate the difficulty of
causing a fault to result in a failure (called
revealing the fault). Several definitions for
testability have been published. According to the
1990 IEEE standard glossary [7], testability is the
degree to which a component facilitates the
establishment of test criteria and the performance of
tests to determine whether those criteria have been
met. Binder [2] defined testability in term of
controllability and observability. Controllability is
the probability that users are able to control the
internal state through the component’s inputs.
Observability is the probability that users are able
to observe outputs of components. If users cannot
control the inputs, they cannot be sure what caused
a given output. If users cannot observe the outputs
of a component under test, they cannot be sure if
the execution was correct. Voas and Miller [14]
explained that testability enhances software testing.
Their definition of software testability focuses on
the tendency for existing faults to be revealed
during testing.

Numerous previous papers [5, 8, 12] have tried
to create test cases that consist of inputs and

expected output pairs. A testing process attempts to
reveal software faults by executing the program on
inputs and comparing the outputs of the execution
with the expected outputs. Software testing is time
consuming and very costly. Tools that provide
information about software testability can help
developers by helping to evaluate costs before test
planning and execution, help target testing in
specific locations, and help designers decide
whether to increase testability of reusable
components before use.

Numerous approaches to estimating testability
have been proposed in the literature [9, 10, 11, 14,
15]. McCabe [11] proposed to evaluate software
complexity by measuring the cyclomatic number
based on the number of execution paths in control
flow graphs, up to, but not including loops. Le
Traon and Rabach [9] proposed a testability
measure for data flow designs that is based on
controllability and observability of the components
in the system. Controllability was defined as the
ease of generating inputs to a component from the
inputs of the system and observability was defined
as the ease of propagating the outputs of a
component to the final outputs of the system. In
particular, the authors proposed a predictive
testability analysis that is appropriate during

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp61-66)

 2

design-specification. They are interested in
controllability and observability in ways that are
similar to our approach, but because our approach
is based on the implementation rather than the
design, our measure has more precision than Le
Traon and Rabach’s. Voas et al. [14, 15] used
program testability to predict the ability to hide
faults. They defined fault sensitivity to analyze
testability as multiplying the probabilities that (1)
the location containing a fault is executed, (2) the
fault corrupts, or infects, the program’s state, and
(3) the corrupted state propagates to the output.
This is named PIE analysis after propagation,
infection and execution. A high fault sensitivity
value indicates high testability. Lin and Lin [10]
measured the testability of software by tracing the
source code to estimate the three factors in the PIE
analysis. Similar to the technique by Voas et al., our
testability analysis technique is closely related to
fault-based testing and mutation testing. In their
work, infection is modeled by making syntactic
changes to a program to model faults. This
infection technique cannot directly be used if the
source code is not available. They also made
random changes to the program’s data state to
estimate propagation. This can be imprecise
because a high percentage of the changes are
unstable and will always result in failure.

Object-oriented software is increasingly
becoming popular for system development, partly
because it emphasizes portability and reusability.
Java classes are compiled into portable binary class
files that contain statements called bytecode. The
class-components are included in Java libraries
without source code, thus the source is not always
available.

This paper presents a class-component
testability analysis technique that does not require
access to the source program. The testability
analysis focuses on the fault revealing ability of
class-components based on data flow analysis. A
fault can be revealed when a program segment that
contains the fault is executed and the fault affects
the output. Thus, higher controllability refers to the
ease of executing all locations that can contain
faults, thereby locating faulty segments. Similarly,
greater observability means the fault has a greater
chance of propagating to the output. Therefore, we
define the testability measurement as the product of
two probabilities, execution probability and
propagation probability.

2 Background
This paper presents a technique for measuring
class-component testability. This technique focuses
on program statements that contain definitions and
uses of variables as in data flow analysis. Each
location is analyzed to estimate its execution and
propagation probability. A fault injection approach
similar to mutation analysis is used for propagation
probability analysis. This section provides brief
overviews for data flow and mutation analysis.

2.1 Data Flow Analysis
Data flow analysis [13] tries to ensure that correct
values of program variables are stored into
memory, and the same values are subsequently
used. A definition (def) is a statement where a
variable’s value is stored into memory. A use is a
statement where a variable’s value is accessed. A
def-use pair (du-pair) of a variable is an ordered
pair of a def and a use, with the limitation that there
must be an execution path from the def to the use
without any intervening redefinition of the variable.

2.2 Mutation Analysis
Mutation analysis [3, 4] is often used to assess the
adequacy of a test set. It is a fault-based testing
strategy that starts with a program to be tested and
makes numerous small syntactic changes to the
original program, creating mutants. If a test set can
cause behavioral differences between the original
and mutant program, the mutant is said to be killed
by the test. The product of mutation analysis is a
measure called the mutation score, which indicates
the percentage of mutants killed by a test set.
Mutants are obtained by applying mutation
operators that introduce the simple changes into the
original program. Examples include changing
arithmetic operators, logical operators, and variable
references.

3 Class-Component Testability

Analysis Model
Component testability analysis can be used to
estimate the difficulty of testing components, aiding
planning and execution of testing. Also, testability
can be used to determine whether the component
should be modified to increase its testability before
reuse.

There are two general testability analysis
approaches. The first focuses on predicting the
effort needed for testing. For example, if software

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp61-66)

 3

has high complexity, more effort may be needed to
satisfy a test criterion. The second approach focuses
on the fault revealing ability during testing. This
work adapts the second approach for testability
analysis.

This paper defines testability analysis as the
probability that existing faults will be revealed
during testing. In this research, testability analysis
is concentrated on data flow analysis, as described
in Section 2. A data state is a set of mappings
between variables and their values. The def
statements modify the data state. For instance, the
data state {(a, undefined)} is changed to {(a, 5)}
after executing the def statement a=5.

The defs and uses of data flow analysis can be
used to find faults. Thus, the locations of defs and
uses are used to analyze testability in this
research. The remainder of this paper refers to the
def and use statements as def locations and use
locations. The goal of this work is to find a model
that can be used to assess the testability of a class-
component. Our model analyzes testability by
measuring the fault revealing ability of a class-
component. To evaluate the testability of a location,
the location containing a fault must be executed. If
the execution results in unexpected output, then the
testability is higher. If the probability of a location l
being executed, the execution probability is E(l),
and the probability that an incorrect data state at l
affects the output, the propagation probability is
P(l), then the testability of l, T(l), is defined as
follows:

T(l) = E(l) * P(l)

3.1 Execution Analysis
Execution analysis executes a class-component and
records the locations executed by each input. The
execution probability of a location l, E(l), is
estimated to be the percentage of inputs that
execute that location. The algorithm for finding an
execution probability of a particular location is as
follows:
1. Assign a location number to each def and each

use location of a class-component.
2. Initialize an array counter to zeroes, where the

size of counter is the number of def and use
locations in a class-component.

3. Execute a class-component by using an input. If
a location l is executed, the element of array
counter that corresponds to the location l is
increased the value by one.

4. Repeat algorithm step 3 m times with different
inputs.

5. Divide each element of counter by m to
calculate an execution probability of each
location. For example, the execution probability
of a location l is estimated to be counter[l]. The
execution probability of location l is
counter[l]/m.

3.2 Propagation Analysis
Propagation analysis estimates the probability that
an incorrect data state caused by a faulty location
will propagate to the output. The incorrect data
state is generated by injecting a fault into the data
state. This is called a data state mutation. This
generation process is similar to the mutation
process in mutation analysis [3, 4]. In this work, the
data state mutation creates mutants at defs and uses.
At defs, the data state is mutated by redefining the
variable value. At uses, the data state is mutated by
changing the variable value to an incorrect value.
Each def and use location l is repeatedly mutated to
create a set of mutants. Each mutant is executed and
the execution output is checked against the original
output. The propagation probability of a location l,
P(l), is the percentage of mutants of l that will
produce incorrect output. The algorithm for finding
a propagation probability of a particular location is
as follows:
1. Create n mutants by data state mutation for a

def or use location l.
2. Initialize an integer variable count to 0.
3. Execute a mutant M with one input.
4. Compare the execution output with the output

of the original program on the same input. If the
outputs differ, propagation has occurred and
count is incremented.

5. Repeat algorithm steps 3 to 4 p times, each time
with different inputs.

6. Divide count by p to calculate the propagation
probability of the mutant M.

7. Repeat algorithm steps 2 to 6 n times, each time
with a different mutant.

8. Compute the average of mutant probabilities to
be the propagation probability of location l.
For each def and use location l, the testability

of the location, T(l), is the execution probability
multiplied by the propagation probability. The
testability measure of a class-component (T) is the
average of the testability of all def and use
locations. If a component has k def and use
locations, the testability measure is calculated as
follows:

T = (∑ T(i) [i =1, 2, …, k]) / k

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp61-66)

 4

4 Testability Analysis Mechanism
The execution algorithm in Section 3 needs to keep
track of which locations are executed. The usual
way to track this kind of information is to
instrument the source of the program, then compile
the instrumented program. However, this research
assumes the source is not available, so a way is
needed to analyze class-components at a lower
level.

Java programs are written and compiled into
portable binary class files. Each class is represented
by a single file that contains bytecode instructions.
This file is dynamically loaded into an interpreter
(Java Virtual Machine, JVM) and executed. To
analyze the testability of a class-component, we
modify bytecode instructions before they are loaded
into JVM.

An open source tool from Apache/Jakarta called
BCEL—Byte Code Engineering Library [1] is used
to access and modify bytecode instructions. Our
analysis process uses BCEL to extract information
and modify bytecode instructions. The process is
presented in the next subsection.

4.1 Execution Analysis Phase
This phase implements execution analysis from
section 3.1. The process of execution analysis is
illustrated in Fig. 1. There are two major
components: (1) Class Analysis / Instruction
Modifier (ClasAnal/InstMod) and (2) Execution
Analysis (ExecAnal). ClasAnal/InstMod modifies
the Java bytecode (original bytecode) and
automatically creates the modified bytecode. By
using BCEL, the Java bytecode is accessed to make
the following manipulations:
• Add fields to be the counters of execution.
• Add a method to initialize the field values and

to set environment values.
• Insert instructions into Java bytecode at every

def and use location. These are recognized by
the PUTFIELD instruction (defs) and the
GETFIELD instruction (uses). The inserted
instructions update the counters when each
location is executed.

4.2 Propagation Analysis Phase
Fig. 2 illustrates propagation analysis, following the
process in section 3.2. Propagation analysis has two
major components: (1) Mutation Generator
(MutaGen) and (2) Propagation Analysis
(PropAnal). The MutaGen accesses Java bytecode
(original bytecode) and manipulates bytecode
instructions to automatically generate mutants by
data state mutation. Data state mutants are created
by inserting new instructions into the Java bytecode
using BCEL. PropAnal invokes each mutant with
test cases. Each execution output of a mutant is
compared with the execution output of original
class. The results of comparison are used to generate
the propagation probability. This testability analysis
mechanism is illustrated in the following section
through a case study.

5 Case Study
This section presents results from a case study that
applied class-component testability analysis to the
vending machine example from Harrold et al. [6].
The Java source code for the vending machine is
shown in Fig. 3, however, it should be noted that
this source code is not available to a component
tester. As said in section 1, testability is based on
controllability and observability. To create a
vending machine class with higher observability,
output statements are added. The original class is
named vending1 and the new class is named
vending2.

The goal of this case study was to determine
whether the proposed testability analysis technique
can, in fact, obtain different results on two classes
that have the same functionality but obviously
different observabilities. Harrold et al. [6] published
25 test cases for vending machine class, which we
used for both vending1 and vending2. In this class,
a test case is a sequence of method calls to the
class-component under test. A short example is the
sequence “initialVariables(); vend(2)”. Vending1
has 19 def and use locations and vending2 has 23.
These locations are found by examining the
bytecode. One source statement can represent
several def and use locations, for example, the
statement “curQtr = curQtr+1;” at line 16 in Fig. 3

Fig.1 Execution Analysis Phase

Original
bytecode

(.class file)
Class Analysis

/Instruction Modifier
(ClasAnal/InstMod)

Read

Create

Execution
Analysis

(ExecAnal) Read

Execution
Probability

Generate

Read
Test

Cases

Modified
bytecode

(.class file)

Fig.2 Propagation Analysis Phase

Mutation
Generator
(MutaGen)

Read
Generate

Propagation
Analysis

(PropAnal)
Propagation
Probability

Original
bytecode

(.class file)

Test
Cases

Mutants
(bytecode)

Read Read

Generate
Read

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp61-66)

 5

1 class VendingMachine {
2
3 private int total;
4 private int curQtr;
5 private int seleTy;
6 private int[] availSelectionVals;
7
8 void initialVariables() {
9 total = 0;
10 curQtr = 0;
11 seleTy = 0;
12 availSelectionVals = new int[] {2,3,13} ;
13 }
14
15 void addQtr() {
16 curQtr = curQtr + 1;
17 }
18 void returnQtr() {
19 curQtr = 0;
20 }
21
22 void vend(int selection) {
23 int MAXSEL = 20;
24 int VAL = 2;
25 seleTy = selection;
26 if (curQtr == 0)
27 System.err.println("No coins inserted");
28 else if (seleTy > MAXSEL)
29 System.err.println("Wrong selection ");
30 else if (!available())
31 System.err.println("Selection unavailable");
32 else {
33 if (curQtr < VAL)
34 System.err.println("Not enough coins");
35 else {
36 System.err.println("Take selection");
37 total = total+ VAL;
38 curQtr = curQtr - VAL; }
39 }
40 System.out.println("Current value = " + curQtr);
42 }

43 boolean available() {
44 for (int i = 0; i<availSelectionVals.length; i++)
45 if (availSelectionVals[i] == seleTy)
46 return true;
47 return false; }
48 } // class CoinBox

Fig.3 Vending Machine Example

is two locations in the bytecode (one def and one
use). Fig. 4 shows bytecode instructions of method
addQtr in Fig. 3.

By using data state mutation, 38 mutants were
created for vending1 seeding faults into the 19 def
and use locations, and 46 mutants were created for
vending2. Table 1 shows the execution probability,
E(l), propagation probability, P(l), and testability,

T(l), for each location (l) in vending1 and vending2.
The average testability measurements are 0.166 for
vending1 and 0.236 for vending2, thus vending2 has
a higher testability measure than vending1. Because
the observability was increased as stated before,
vending2 has higher testability than the vending1,
therefore, these results support the idea that our
testability analysis can be used to measure the
testability of class-components.

6 Conclusions
This paper has proposed a method to measure
testability of a class-component whose source is not
available. The testability measure concentrates on
the fault revealing ability of a class-component
based on data flow analysis and considering def and
use locations. To measure the class-component
testability, we analyze execution and propagation
probabilities from the bytecode in binary class files.
The execution probability is the percentage of
faulty locations executed. The propagation
probability is the percentage of faulty locations for
which an input caused incorrect output. The case
study shows that our measurement can estimate
class-component testability with reasonable
accuracy. The testability analysis technique in this
paper is fully quantitative and automated tool
support is currently under development. Because
this technique is based on the program’s
implementation, the results should be more precise
than techniques that depend on class diagrams to
estimate testability. Testability analysis can be
used to predict the ease (or difficulty) of component
testing and can be used to determine whether the
component testability should be increased before
the component is reused. Future plans are to apply
the testability measurement to other aspects of
software development.

7 Acknowledgments
This work was supported in part by Thailand’s
Commission of Higher Education (MOE), and by
the Center of Excellence in Software Engineering,
Department of Computer Engineering, Faculty of
Engineering, Chulalongkorn University. Thanks to
the Department of Information and Software
Engineering, School of Information Technology
and Engineering, George Mason University, for
hosting the first author during this research project.
The second author is a part-time faculty researcher
at the National Institute of Standards and
Technology (NIST).

Fig.4 Bytecode Instructions of Method addQtr

0: aload_0
1: aload_0
2: getfield CoinBox.curQtr I (3)
5: iconst_1
6: iadd
7: putfield CoinBox.curQtr I (3)
10: return

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp61-66)

 6

vending1 vending2

l E(l) P(l) T(l) l E(l) P(l) T(l)

1 1.00 0.00 0.00 1 1.00 0.12 0.12

2 1.00 0.32 0.32 2 1.00 0.48 0.48

3 1.00 0.00 0.00 3 1.00 0.02 0.02

4 1.00 0.28 0.28 4 1.00 0.28 0.28

5 0.84 0.42 0.35 5 0.84 0.72 0.60

6 0.84 0.52 0.44 6 0.84 0.64 0.54

7 0.36 0.08 0.03 7 0.84 0.76 0.64

8 0.80 0.44 0.35 8 0.36 0.08 0.03

9 0.80 0.32 0.26 9 0.80 0.52 0.42

10 0.52 0.16 0.08 10 0.80 0.74 0.59

11 0.28 0.16 0.04 11 0.80 0.32 0.26

12 0.24 0.00 0.00 12 0.52 0.52 0.27

13 0.24 0.00 0.00 13 0.52 0.12 0.06

14 0.24 0.18 0.04 14 0.28 0.16 0.04

15 0.24 0.26 0.06 15 0.24 0.24 0.06

16 0.80 0.74 0.59 16 0.24 0.04 0.01

17 0.36 0.28 0.10 17 0.24 0.04 0.01

18 0.36 0.28 0.10 18 0.24 0.22 0.05

19 0.36 0.28 0.10 19 0.24 0.22 0.05

Average Testability 0.166 20 0.80 0.74 0.59

 21 0.36 0.28 0.10

 22 0.36 0.28 0.10

 23 0.36 0.28 0.10
 Average Testability 0.236

References:
[1] Apache Software Foundation, BCEL: Byte

Code Engineering Library, Part of the
Apache/Jakarta project, 2002-2003.
http://jakarta.apache.org/bcel/ (accessed
November 2005).

[2] R. V. Binder, Design for testability with object-
oriented systems, Communications of the ACM,
Vol.37, No.9, September 1994, pp.87-101.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward,
Hints on test data selection: Help for the
practicing programmer, IEEE Computer,
Vol.11, No.4, April 1978, pp.34-41.

[4] R. A. DeMillo and A. J. Offutt, Constraint-
based automatic test data generation, IEEE

Transactions on Software Engineering, Vol.17,
No.9, September 1991, pp.900-910.

[5] R. DeMillo and J. Offutt, Experimental Results
from an Automatic Test Case Generator, ACM
Transactions on Software Engineering
Methodology, Vol.2, No.2, April 1993, pp.109-
175.

[6] M.J. Harrold, A. Orso, D. Rosenblum, G.
Rothermel, M.L. Soffa, & H. Do, Using
component metadata to support the regression
testing of component-based software,
Proceedings of IEEE International Conference
on Software Maintenance, Florence, Italy,
2001, pp.154-163.

[7] IEEE Standard Glossary of Software
Engineering Technology, ANSI/IEEE 610.12,
IEEE Press, 1990.

[8] S. Kansomkeat, and W. Rivepiboon,
Automated-generating test case using UML
statechart diagrams, Proceedings of the 2003
annual research conference of the South
African institute of computer scientists and
information, Fourways, South Africa,
September 2003, pp.296-300.

[9] Y. Le Traon, and C. Robach, Testability
measurements for data flow designs,
Proceedings of the Fourth International
Software Metrics Symposium, New Mexico,
USA, 1997, pp.91-98.

[10] J. C. Lin, and S. W. Lin, An Analytic Software
Testability Model, Proceedings of 11th of Asian
Test Symposium (ATS’02), Guam, USA,
November 2002, pp.278-283.

[11] T. J. McCabe, A Complexity Measure, IEEE
Transactions on Software Engineering, Vol.2,
No.4, December 1967, pp.308-320.

[12] J. Offutt and A. Abdurazik, Generating test
cases from UML Specifications, Proceedings of
2th International Conference on the Unified
Modeling Language (UML99), Fort Collins,
CO, October 1999, pp.416-429.

[13] S. Rapps and E. J. Weyuker, Selecting
software test data using data flow information,
IEEE Transactions on Software Engineering,
Vol.11, No.4, April 1985, pp.367-375.

[14] J. M. Voas, and Miller K. W, Software
testability: The new verification, IEEE
Software, Vol.12, No.3, May 1995, pp.17-28.

[15] J. M. Voas, PIE: A dynamic failure-based
technique, IEEE Transactions on Software
Engineering, Vol.18, No.8, August 1992,
pp.717-727.

Table 1. Testability Measurement of
vending1 and vending2

Proceedings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Madrid, Spain, February 15-17, 2006 (pp61-66)

