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Abstract: - Testability is a quality factor used to predict the amount of effort required for software testing and 
to indicate the difficulty of revealing faults. This paper presents a quantitative testability analysis method for a 
software component that can be used when the source program is not available, but the bytecode is (as in Java 
.class files). This process analyzes the testability of each location to evaluate the component testability. The 
testability of a location is analyzed by computing the probability that the location will be executed and, if the 
location contains a fault, the execution will cause the fault to be revealed as a failure. This analysis process 
helps developers measure component testability and determine whether the component testability should be 
increased before the component is reused. In addition, low testability locations are identified.  
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1 Introduction 
Testability is a quality factor that attempts to 
predict how much effort will be required for 
software testing and to estimate the difficulty of 
causing a fault to result in a failure (called 
revealing the fault). Several definitions for 
testability have been published. According to the 
1990 IEEE standard glossary [7], testability is the 
degree to which a component facilitates the 
establishment of test criteria and the performance of 
tests to determine whether those criteria have been 
met. Binder [2] defined testability in term of 
controllability and observability. Controllability is 
the probability that users are able to control the 
internal state through the component’s inputs. 
Observability is the probability that users are able 
to observe outputs of components. If users cannot 
control the inputs, they cannot be sure what caused 
a given output. If users cannot observe the outputs 
of a component under test, they cannot be sure if 
the execution was correct. Voas and Miller [14] 
explained that testability enhances software testing. 
Their definition of software testability focuses on 
the tendency for existing faults to be revealed 
during testing. 

Numerous previous papers [5, 8, 12] have tried 
to create test cases that consist of inputs and 

expected output pairs. A testing process attempts to 
reveal software faults by executing the program on 
inputs and comparing the outputs of the execution 
with the expected outputs.  Software testing is time 
consuming and very costly. Tools that provide 
information about software testability can help 
developers by helping to evaluate costs before test 
planning and execution, help target testing in 
specific locations, and help designers decide 
whether to increase testability of reusable 
components before use. 

Numerous approaches to estimating testability 
have been proposed in the literature [9, 10, 11, 14, 
15]. McCabe [11] proposed to evaluate software 
complexity by measuring the cyclomatic number 
based on the number of execution paths in control 
flow graphs, up to, but not including loops. Le 
Traon and Rabach [9] proposed a testability 
measure for data flow designs that is based on 
controllability and observability of the components 
in the system. Controllability was defined as the 
ease of generating inputs to a component from the 
inputs of the system and observability was defined 
as the ease of propagating the outputs of a 
component to the final outputs of the system. In 
particular, the authors proposed a predictive 
testability analysis that is appropriate during 
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design-specification. They are interested in 
controllability and observability in ways that are 
similar to our approach, but because our approach 
is based on the implementation rather than the 
design, our measure has more precision than Le 
Traon and Rabach’s. Voas et al. [14, 15] used 
program testability to predict the ability to hide 
faults. They defined fault sensitivity to analyze 
testability as multiplying the probabilities that (1) 
the location containing a fault is executed, (2) the 
fault corrupts, or infects, the program’s state, and 
(3) the corrupted state propagates to the output. 
This is named PIE analysis after propagation, 
infection and execution. A high fault sensitivity 
value indicates high testability. Lin and Lin [10] 
measured the testability of software by tracing the 
source code to estimate the three factors in the PIE 
analysis. Similar to the technique by Voas et al., our 
testability analysis technique is closely related to 
fault-based testing and mutation testing. In their 
work, infection is modeled by making syntactic 
changes to a program to model faults. This 
infection technique cannot directly be used if the 
source code is not available. They also made 
random changes to the program’s data state to 
estimate propagation. This can be imprecise 
because a high percentage of the changes are 
unstable and will always result in failure. 

Object-oriented software is increasingly 
becoming popular for system development, partly 
because it emphasizes portability and reusability. 
Java classes are compiled into portable binary class 
files that contain statements called bytecode. The 
class-components are included in Java libraries 
without source code, thus the source is not always 
available. 

This paper presents a class-component 
testability analysis technique that does not require 
access to the source program. The testability 
analysis focuses on the fault revealing ability of 
class-components based on data flow analysis. A 
fault can be revealed when a program segment that 
contains the fault is executed and the fault affects 
the output. Thus, higher controllability refers to the 
ease of executing all locations that can contain 
faults, thereby locating faulty segments. Similarly, 
greater observability means the fault has a greater 
chance of propagating to the output. Therefore, we 
define the testability measurement as the product of 
two probabilities, execution probability and 
propagation probability. 

 
 
 

 

2 Background 
This paper presents a technique for measuring 
class-component testability. This technique focuses 
on program statements that contain definitions and 
uses of variables as in data flow analysis. Each 
location is analyzed to estimate its execution and 
propagation probability. A fault injection approach 
similar to mutation analysis is used for propagation 
probability analysis. This section provides brief 
overviews for data flow and mutation analysis. 

 
 

2.1 Data Flow Analysis 
Data flow analysis [13] tries to ensure that correct 
values of program variables are stored into 
memory, and the same values are subsequently 
used. A definition (def) is a statement where a 
variable’s value is stored into memory. A use is a 
statement where a variable’s value is accessed. A 
def-use pair (du-pair) of a variable is an ordered 
pair of a def and a use, with the limitation that there 
must be an execution path from the def to the use 
without any intervening redefinition of the variable. 
  

 
2.2 Mutation Analysis 
Mutation analysis [3, 4] is often used to assess the 
adequacy of a test set. It is a fault-based testing 
strategy that starts with a program to be tested and 
makes numerous small syntactic changes to the 
original program, creating mutants. If a test set can 
cause behavioral differences between the original 
and mutant program, the mutant is said to be killed 
by the test. The product of mutation analysis is a 
measure called the mutation score, which indicates 
the percentage of mutants killed by a test set. 
Mutants are obtained by applying mutation 
operators that introduce the simple changes into the 
original program. Examples include changing 
arithmetic operators, logical operators, and variable 
references. 
  
 
3 Class-Component Testability 

Analysis Model 
Component testability analysis can be used to 
estimate the difficulty of testing components, aiding 
planning and execution of testing. Also, testability 
can be used to determine whether the component 
should be modified to increase its testability before 
reuse. 

There are two general testability analysis 
approaches. The first focuses on predicting the 
effort needed for testing. For example, if software 
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has high complexity, more effort may be needed to 
satisfy a test criterion. The second approach focuses 
on the fault revealing ability during testing. This 
work adapts the second approach for testability 
analysis. 

This paper defines testability analysis as the 
probability that existing faults will be revealed 
during testing. In this research, testability analysis 
is concentrated on data flow analysis, as described 
in Section 2. A data state is a set of mappings 
between variables and their values. The def 
statements modify the data state. For instance, the 
data state {(a, undefined)} is changed to {(a, 5)} 
after executing the def statement a=5. 

The defs and uses of data flow analysis can be 
used to find faults. Thus, the locations of defs and 
uses are used to analyze testability in this 
research. The remainder of this paper refers to the 
def and use statements as def locations and use 
locations. The goal of this work is to find a model 
that can be used to assess the testability of a class-
component. Our model analyzes testability by 
measuring the fault revealing ability of a class-
component. To evaluate the testability of a location, 
the location containing a fault must be executed. If 
the execution results in unexpected output, then the 
testability is higher. If the probability of a location l 
being executed, the execution probability is E(l), 
and the probability that an incorrect data state at l 
affects the output, the propagation probability is 
P(l), then the testability of l, T(l), is defined as 
follows: 

T(l) = E(l) * P(l) 
 

 
3.1 Execution Analysis  
Execution analysis executes a class-component and 
records the locations executed by each input. The 
execution probability of a location l, E(l), is 
estimated to be the percentage of inputs that 
execute that location. The algorithm for finding an 
execution probability of a particular location is as 
follows: 
1. Assign a location number to each def and each 

use location of a class-component.   
2. Initialize an array counter to zeroes, where the 

size of counter is the number of def and use 
locations in a class-component. 

3. Execute a class-component by using an input. If 
a location l is executed, the element of array 
counter that corresponds to the location l is 
increased the value by one. 

4. Repeat algorithm step 3 m times with different 
inputs. 

5. Divide each element of counter by m to 
calculate an execution probability of each 
location. For example, the execution probability 
of a location l is estimated to be counter[l]. The 
execution probability of location l is 
counter[l]/m. 

 

3.2 Propagation Analysis  
Propagation analysis estimates the probability that 
an incorrect data state caused by a faulty location 
will propagate to the output. The incorrect data 
state is generated by injecting a fault into the data 
state. This is called a data state mutation. This 
generation process is similar to the mutation 
process in mutation analysis [3, 4]. In this work, the 
data state mutation creates mutants at defs and uses. 
At defs, the data state is mutated by redefining the 
variable value. At uses, the data state is mutated by 
changing the variable value to an incorrect value. 
Each def and use location l is repeatedly mutated to 
create a set of mutants. Each mutant is executed and 
the execution output is checked against the original 
output. The propagation probability of a location l, 
P(l), is the percentage of mutants of l that will 
produce incorrect output. The algorithm for finding 
a propagation probability of a particular location is 
as follows: 
1. Create n mutants by data state mutation for a 

def or use location l. 
2. Initialize an integer variable count to 0. 
3. Execute a mutant M with one input. 
4. Compare the execution output with the output 

of the original program on the same input. If the 
outputs differ, propagation has occurred and 
count is incremented. 

5. Repeat algorithm steps 3 to 4 p times, each time 
with different inputs. 

6. Divide count by p to calculate the propagation 
probability of the mutant M. 

7. Repeat algorithm steps 2 to 6 n times, each time 
with a different mutant. 

8. Compute the average of mutant probabilities to 
be the propagation probability of location l. 
For each def and use location l, the testability 

of the location, T(l), is the execution probability 
multiplied by the propagation probability. The 
testability measure of a class-component (T) is the 
average of the testability of all def and use 
locations. If a component has k def and use 
locations, the testability measure is calculated as 
follows: 

T = (∑ T(i)    [i =1, 2, …, k]) / k 
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4 Testability Analysis Mechanism 
The execution algorithm in Section 3 needs to keep 
track of which locations are executed. The usual 
way to track this kind of information is to 
instrument the source of the program, then compile 
the instrumented program. However, this research 
assumes the source is not available, so a way is 
needed to analyze class-components at a lower 
level. 

Java programs are written and compiled into 
portable binary class files. Each class is represented 
by a single file that contains bytecode instructions. 
This file is dynamically loaded into an interpreter 
(Java Virtual Machine, JVM) and executed. To 
analyze the testability of a class-component, we 
modify bytecode instructions before they are loaded 
into JVM. 

An open source tool from Apache/Jakarta called 
BCEL—Byte Code Engineering Library [1] is used 
to access and modify bytecode instructions. Our 
analysis process uses BCEL to extract information 
and modify bytecode instructions. The process is 
presented in the next subsection. 

  

 

4.1 Execution Analysis Phase  
This phase implements execution analysis from 
section 3.1. The process of execution analysis is 
illustrated in Fig. 1. There are two major 
components: (1) Class Analysis / Instruction 
Modifier (ClasAnal/InstMod) and (2) Execution 
Analysis (ExecAnal). ClasAnal/InstMod modifies 
the Java bytecode (original bytecode) and 
automatically creates the modified bytecode. By 
using BCEL, the Java bytecode is accessed to make 
the following manipulations: 
• Add fields to be the counters of execution. 
• Add a method to initialize the field values and 

to set environment values. 
• Insert instructions into Java bytecode at every 

def and use location. These are recognized by 
the PUTFIELD instruction (defs) and the 
GETFIELD instruction (uses). The inserted 
instructions update the counters when each 
location is executed. 

4.2 Propagation Analysis Phase  
Fig. 2 illustrates propagation analysis, following the 
process in section 3.2. Propagation analysis has two 
major components: (1) Mutation Generator 
(MutaGen) and (2) Propagation Analysis 
(PropAnal). The MutaGen accesses Java bytecode 
(original bytecode) and manipulates bytecode 
instructions to automatically generate mutants by 
data state mutation. Data state mutants are created 
by inserting new instructions into the Java bytecode 
using BCEL. PropAnal invokes each mutant with 
test cases. Each execution output of a mutant is 
compared with the execution output of original 
class. The results of comparison are used to generate 
the propagation probability. This testability analysis 
mechanism is illustrated in the following section 
through a case study. 

 
5  Case Study 
This section presents results from a case study that 
applied class-component testability analysis to the 
vending machine example from Harrold et al. [6]. 
The Java source code for the vending machine is 
shown in Fig. 3, however, it should be noted that 
this source code is not available to a component 
tester. As said in section 1, testability is based on 
controllability and observability. To create a 
vending machine class with higher observability, 
output statements are added. The original class is 
named vending1 and the new class is named 
vending2. 

The goal of this case study was to determine 
whether the proposed testability analysis technique 
can, in fact, obtain different results on two classes 
that have the same functionality but obviously 
different observabilities. Harrold et al. [6] published 
25 test cases for vending machine class, which we 
used for both vending1 and vending2. In this class, 
a test case is a sequence of method calls to the 
class-component under test. A short example is the 
sequence “initialVariables(); vend(2)”. Vending1 
has 19 def and use locations and vending2 has 23. 
These locations are found by examining the 
bytecode. One source statement can represent 
several def and use locations, for example, the 
statement “curQtr = curQtr+1;” at line 16 in Fig. 3 

Fig.1 Execution Analysis Phase 
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1 class VendingMachine { 
2 
3 private int total; 
4 private int curQtr; 
5 private int seleTy; 
6 private int[] availSelectionVals; 
7 
8 void initialVariables() { 
9  total = 0; 
10  curQtr = 0; 
11  seleTy = 0; 
12  availSelectionVals = new int[] {2,3,13} ; 
13 } 
14  
15 void addQtr() { 
16  curQtr = curQtr + 1; 
17 } 
18 void returnQtr() { 
19  curQtr = 0; 
20 } 
21 
22 void vend( int selection ) { 
23  int MAXSEL = 20; 
24  int VAL = 2; 
25  seleTy = selection; 
26  if ( curQtr == 0 ) 
27   System.err.println("No coins inserted"); 
28  else if ( seleTy > MAXSEL ) 
29   System.err.println("Wrong selection "); 
30  else if ( !available( ) ) 
31   System.err.println("Selection  unavailable"); 
32  else { 
33   if ( curQtr < VAL )  
34   System.err.println("Not enough coins"); 
35          else { 
36   System.err.println("Take selection");  
37   total = total+ VAL; 
38   curQtr = curQtr - VAL; } 
39  } 
40  System.out.println( "Current value = " + curQtr ); 
42 } 
 

43 boolean available( ) { 
44    for (int i = 0; i<availSelectionVals.length; i++) 
45       if (availSelectionVals[i] == seleTy)  
46   return true; 
47  return false;  } 
48 }  // class CoinBox 

Fig.3 Vending Machine Example 

is two locations in the bytecode (one def and one 
use). Fig. 4 shows bytecode instructions of method 
addQtr in Fig. 3. 

By using data state mutation, 38 mutants were 
created for vending1 seeding faults into the 19 def 
and use locations, and 46 mutants were created for 
vending2. Table 1 shows the execution probability, 
E(l), propagation probability, P(l), and testability, 

T(l), for each location (l) in vending1 and vending2. 
The average testability measurements are 0.166 for 
vending1 and 0.236 for vending2, thus vending2 has 
a higher testability measure than vending1. Because 
the observability was increased as stated before, 
vending2 has higher testability than the vending1, 
therefore, these results support the idea that our 
testability analysis can be used to measure the 
testability of class-components. 
 
 
6 Conclusions 
This paper has proposed a method to measure 
testability of a class-component whose source is not 
available. The testability measure concentrates on 
the fault revealing ability of a class-component 
based on data flow analysis and considering def and 
use locations. To measure the class-component 
testability, we analyze execution and propagation 
probabilities from the bytecode in binary class files. 
The execution probability is the percentage of 
faulty locations executed. The propagation 
probability is the percentage of faulty locations for 
which an input caused incorrect output. The case 
study shows that our measurement can estimate 
class-component testability with reasonable 
accuracy. The testability analysis technique in this 
paper is fully quantitative and automated tool 
support is currently under development. Because 
this technique is based on the program’s 
implementation, the results should be more precise 
than techniques that depend on class diagrams to 
estimate testability.  Testability analysis can be 
used to predict the ease (or difficulty) of component 
testing and can be used to determine whether the 
component testability should be increased before 
the component is reused. Future plans are to apply 
the testability measurement to other aspects of 
software development. 
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Fig.4 Bytecode Instructions of Method addQtr 

0:    aload_0 
1:    aload_0 
2:    getfield          CoinBox.curQtr I (3) 
5:    iconst_1 
6:    iadd 
7:    putfield          CoinBox.curQtr I (3) 
10:  return 
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vending1 vending2 

l E(l) P(l) T(l) l E(l) P(l) T(l) 

1 1.00 0.00 0.00 1 1.00 0.12 0.12 

2 1.00 0.32 0.32 2 1.00 0.48 0.48 

3 1.00 0.00 0.00 3 1.00 0.02 0.02 

4 1.00 0.28 0.28 4 1.00 0.28 0.28 

5 0.84 0.42 0.35 5 0.84 0.72 0.60 

6 0.84 0.52 0.44 6 0.84 0.64 0.54 

7 0.36 0.08 0.03 7 0.84 0.76 0.64 

8 0.80 0.44 0.35 8 0.36 0.08 0.03 

9 0.80 0.32 0.26 9 0.80 0.52 0.42 

10 0.52 0.16 0.08 10 0.80 0.74 0.59 

11 0.28 0.16 0.04 11 0.80 0.32 0.26 

12 0.24 0.00 0.00 12 0.52 0.52 0.27 

13 0.24 0.00 0.00 13 0.52 0.12 0.06 

14 0.24 0.18 0.04 14 0.28 0.16 0.04 

15 0.24 0.26 0.06 15 0.24 0.24 0.06 

16 0.80 0.74 0.59 16 0.24 0.04 0.01 

17 0.36 0.28 0.10 17 0.24 0.04 0.01 

18 0.36 0.28 0.10 18 0.24 0.22 0.05 

19 0.36 0.28 0.10 19 0.24 0.22 0.05 

Average Testability 0.166 20 0.80 0.74 0.59 

    21 0.36 0.28 0.10 

    22 0.36 0.28 0.10 

    23 0.36 0.28 0.10 
    Average Testability 0.236 
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