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Abstract: This paper concerns real-times hexapod robot force control. Based on an operational trajectory
planner, a computed torque control for each leg of hexapod robot is presented. This approach takes in to
account the real-time force distribution on the robot legs and the dynamic model of the hexapod. First,
Kinematic and dynamic modeling are presented. Than, a methodology for the optimal force distribution
is given. The force distribution problem is formulated in terms of a nonlinear programming problem
under equality and inequality constraints. Then, according to X. Chen et al, the friction constraints are
transformed from nonlinear inequalities into a combination of linear equalities and linear inequalities.
Therefore, the overall hexapod computed torque control is presented. Simulations are given in or-
der to show the effectiveness of the proposed approach. Finally, some remarks and perspectives are given.
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1 Introduction

Hexapod robots, as part of legged vehicles, can be
used in work spaces with rough terrain, e.g. map
building on an uneven ground, hazardous tasks
like land mine searching and removing, volcano
data collection, etc.

AS shown in [1], in-
terests to  walking
machine, from research
and application point,
of views, are twofold.
First, the complex-
ity nature of legged
locomotion has been

Figure 1: View of the very attractive and

hexapod challenging to many
pioneering researches.

Due to the complexity of the legged robots, ap-
plications in real world are not significant. Major
problems concerns real time dynamic control of
the legged robot under several constraints. To
overcome such problems, dynamic model should
be integrated in every control strategy.

Before we address the hexapod robot’s dynamic
modeling it is helpful to have an overall view of

Plat-form

how the robot is controlled. In the task planing
stage, a trajectory planner is used to determine a
path that guides the hexapod from its initial posi-
tion to a given final position. Then, a gait, which
gives the position and events for placing and lift-
ing the robot legs is selected [2]. The inverse kine-
matic model is, than used in order to to compute
the desired trajectory (positions and velocities)
in joint space. A joint computed torque control
strategy is used for the hexapod real time control.
The proposed approach is based on the computa-
tion of the force distribution on the legs. Due to
the existence of three actuated joints in each leg,
the hexapod robot has redundant actuation lead-
ing to more active joints (18) than the robot plat-
form degree-of-freedom (6 dof), figure(1). Thus,
when formulating the force distribution problem,
we find fewer force moment balancing equations
than unknown variables. So, the solution of these
equations is not unique. Moreover, some physical
constraints, that concern the contact nature, fric-
tion, ...etc, must be taken into account in the cal-
culation of force distribution. In addition, joints
torque saturation must also be considered. Thus
the Force Distribution Problem (FDP) can be for-
mulated as a nonlinear constrained programming
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constraints. Several approaches have been pro-
posed for solving such a problem [3], [4],[5],[6], [7],
(8] [9],[10] and [11].

The robot crawling is divided into 3 phases. The
first phase, only 3 legs are supporting the robot,
for instance legs 1 — 2 — 3, leading to a force dis-
tribution problem with 9 unknown variables. Fur-
thermore, in the second phase, all the six legs are
supporting the robot leading to a force distribu-
tion problem with 18 unknown variables. In or-
der to reduce the problem complexity, we consider
that the contact forces on the legs 1-2-3 can be de-
duced from the first phase by introducing a con-
tinuous, decreasing function that varies from 1 to
0. Thus, the problem dimension, in the second
phase, can be reduced from 18 to 9. The third
phase is similar to the first one, with the legs 4-5-
6 supporting the robot. In the three phases, the
force-distribution problem is the same and solved
with the same algorithm. The rest of the paper
is organized as follows. Direct and inverse geo-
metrical models of the hexapod are presented in
section 2. In section 3 the dynamic model of an
hexapod robot is derived. Section 4 concerns the
force distribution problem. For simulation a real
time control is presented in section 5.

2 Geometrical Modelling

Before presenting the direct and inverse geomet-
rical model, let us consider the hexapod architec-
ture. As the hexapod legs are identical, only one
leg modelling is considered, the leg j architecture
is given in figure (10). Every leg ”j” (j=1,...,6) is
fixed at the plate-forme by a revolute joint situ-
ated at [; distance from the center of gravity of
the plate-forme (the body). The angle ¢; rep-
resents the orientation of the coordinate frame
(z1,,Y1,5, #1,5) fixed at the first articulation of the
leg and the coordinate fixed coordinate frame of
the body (xo,y0,20). A walking robot is consid-
erate as an arborescent robot with some closed
loops. So to study this kind of robots we use the
method defined by Wissama and Klifinger [12].

The transformation matrix from ith joint’s at-
tached coordinate frame to the (i-1)th joint’s at-
tached coordinate frame is given by figure (11):

=L, = R(Z,v)T(Z,b)R(X, )T (X, d)
R(Z,0)T(Z,r)

Plat-form
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Figure 2: geometrical
model
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Figure 3: geometrical
parameters
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The table (1) describes the transformation from
the world ground coordinate frame (X,Y,Z) to
the coordinate frame at the contact point ”4” of
each leg. The transformation providing the exact

frame « d| ¢ |r| b ¥
plat-form « d| ¢ |r| h | p
liaison”1” 0 Li|01; |0 0 | ¢
liaison”2” | —7/2 | 0 | 62, | O | =11 | O
liaison”3” 0 lp | 03;10] 0 0
contact Pt”4” 0 I3 104;10] 0 0

Table 1: geometrical parameters

position of the contact point”4” of any leg in the
absolute coordinate frame fixed at the ground is
given by :

fry =" T{T{ T3 T3, (2)

When the position and the orientation of the last
coordinate frame fixed to the end of each leg ”j”
are known ,We apply the method proposed by
Paul [13]. It provides the values of the joints co-
ordinates 0; ; (i =1,2,3) (j =1, ..,6).
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3.1 introduction

The robot dynamics is given by [14] [12] [15] :
r=£(0,0,0) (3)

Where, 6, é, and 6 are respectively the generalizes
coordinates, speeds and acceleration.

The explicit forme of Eq(3) can be expressed as
follows for any leg ”j”:

L= M®)0+ C0H,00+QUO)+J'f (4)

where M € 33, C € ®#3*1, Q € R**! and
JT e w31,

e M(0), matrix (n X n) representing the iner-
tia of the robot, which is deduced from the
kinetic energy.

C(6,0), a vector (n x 1) representing coriolis
torques and centrifuges forces.

Q) = [Q,....,Q,], a vector of gravity
torque and forces.

f the reaction of the ground

E and U are respectively the kinetic and the
potential energy of the system

The Eq(3) can be rewritten as:
T = M(0)6 + H(0,0) + J' f (5)

with :
H(6,0) = C(0,0)6 + Q(0)
Then, we can write :
H,0)=T ; if0=0andf=0

So if we use Newton-Euler formalism with 6 =
0 and f = 0 we obtained the value of H(6,6).
This transformation is very important and per-
mits to:

e extract the acceleration vector 6:

6=M"'(6)(T —J" f— H(,0))

e avoid the computation of the vector C(6,6)
which has redundant algorithm.

Figure 4: Forces acting on the hexapod sys-
tem

3.2 Newton-Euler Formalism

Remark: The contact forces on the ground,
Joo £y, f, are O if the leg is lifted and # 0 oth-
erwise.

The Newton-Euler algorithm can be established
as follow [12] :

3.2.1 Velocities and accelerations compu-
tation

let C; be any link of a leg ”j”, figures (4)(5), v; the
velocity of the gravity center G; and w; the angular
velocity of the link C;. Let ; = v; the acceleration

of G; and a; = w; the angular acceleration of the

link C;. Then:
P,=P,; 1+ P, (6)

and
doi = Poi + d;; (7)
after derivation :
Py=P,i 1 +wi 1 AP 1, +00:Z; (8)
In our case, we have only rotational articulations
so o; = 0, then:
Vi = dp; = Poi +w; 1 A di;

The second derivation gives:

Py=Pyi 14+ a1 NPy +wii A(wisi A Pi_y)
+ai(29iwz~_1 NZ;,+6,Z
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link C; of leg « j»

Figure 5: Kinematics parameters represen-
tation of a link ”i” in a leg ”j”

(9)
And

Yi =0 = doi = Poi+ a1 Ndjj +wi AN(wi—1 A dij)

(10)
v; represents the gravity center acceleration.
There fore we can define the global acceleration
with the following relation:

a; = Py + g2 (11)
where, g is the gravity acceleration with :
a; N x+w; A\ (w; A*x) = bx (12)
In condensed forme:
_bi =

+ (13)

)
1€
1€)

aand@ : represent the skew symmetric matrixes

Eq(11) can be represented in condensed forme:
a; = oiti + iy (14)

with:
t; = 29.1'(4)2;1 ANZ;+0;Z;
i1 =01 +b_ 1P

In our case, o;t; = 0 because o; = 0, then we will
have:

Vi + 92y = o + b;d;; (15)
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Figure 6: Equilibrium of a link ”i” in a leg
99 3%

J

3.2.2 Forces and torques computation

e Let ¢;, the interaction torque exerted by the
link C;_; on the link C; figure(6).

e f., the interaction force exerted on o; by the
link C;_1 on the link C;.

o F' = f + 0,1 Z;, the force exerted, on o; by
the " actionnary on the link Cj, where I'
is a scalars, representing the moment of the
motor.

e C'=c'+5;I"Z; :the moment exerted, by
the link Cj_; and the 3t actionnary on the
link C;.

The equilibrium of the link C; can be represented
by:

F...=F — F"' —m;gZy = m;y; (16)

=C —~C" —di i ANF +diy i ANFT(17)

C,

res

and . . .
C';"es = (Pza'i —wi A ((pzwi) (18)

Where ,p' is the inertia matrixes of the link C;.
from Eq(16) :

F' = F*' 4 mj(o; + bidy;) (19)
Then, from Eq(17) and (18) we obtained:
C' = C" + pla; + w; A (P'w;)

+d;; A (Fl — F’H_l) + Pi,i+1 A Ft!



Progagegos ofie SRINGRAS Bh SRy BAARIBRRRSI Rovotes 3 Aupma e iRy, PN Hat iR A1 112

The total kinetic energy of the system is given as
follows :

E= zn: E; (20)
j=1

where Ej, kinetic energy of the link C';,expressed
by the following equation :

1 .
EBj =S (wj¢'wj +m Vg Vay)  (21)

wj : the instantiate rotation velocity of the link

"C;” expressed in the coordinate frame ”j”.

V; : linear velocity of the gravity center of the
23N

link ”C;” expressed in the coordinate frame ”j”.
as the figure (7) show:

Figure 7: Modelling a link of a leg

Ve = i+ widj; (22)
as we know:

k= ¢ —m;dj;dj; (23)

Eq(21) can be transformed :
1 o . . . .

Ej = i(w]T]kj ]wj—i-mj V?] Vj+2mj]d£-(] Vj/\ij))
(24)

with:

ju)j =] Aj,I j_lu)j,1 +5j9§Zj =] wj—1 +5j9.ijj
(25)

and,

TV =0 Ay U7 Vit wi APy ) 0,07 2

_ (26)

TA; 1 € R3%3.  represented the orientation

maftrix .

In the end we computed the matrix M from
Eqgs(20)(24) :

The elements M;; of the matrix M is equal to the
coefficient of 67/2 in the expression of kinetic en-
ergy, and the elements M;; , if « # j is equal to the
coefficient of 910] My = Iz + 5221254+ C2% Ty, +
5232 I3+ C232Iy3 +m3C2212 + m3C23 C2Iyl3 +
Ia1

My = M3 =0

Moy = IZQ+IZ3+m3832l%+m3032l%+m303 Iol3+
IGQ

Moy = Iz3 + 1/2 msC3lyl3

M33 = .[23 + Ia3

Whith, (Taq, Ias and Ias) represent the inertias of
the motors. These results are obtained with diag-
onal inertia matrix of the legs links.

At the end of computation for all legs, we can
describe the equilibrium of the plat-form as fol-
lowing, figure (8).

Yoo

14

o

’Cys .
L Plat-form

Figure 8: Equilibrium of the plat-form

e let v,0 and wy o respectively the plat-form de-
sired linear acceleration and angular acceler-
ation in the coordinates frame (g, yo, 20)-

° F(f,j, the force applied by the leg ”j” at the
articulation ”1” on the plat-form 70”.

. C‘l)’j, the moment applied by the 7 leg in
the articulation ”1” on the plat-form .

. Pgld-, the distance between the articulation
71”7 of the j™ leg and the origin of the coordi-
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coordinate frame.

The application of the dynamic fundamental
principe, at the mass center of the plate-form pro-
vides the following matrix equation :

moly 0 700 —mo8 _
0 ¢ wo,0 wo,0 A (¢°wo,0)

(27)
Where,

e mp and go are respectively the masse and the
inertia matrix of the plat-form.

e I, the identity matrix (3 x 3).
e g, : gravity vector
F and M are definite as follow :

{ F=Y' F.

M=y (G, + P amy) P

Lj

4 Force Distribution Problem

4.1 problem Formulation

The force system acting on a hexapod robot is
shown in figure (9). For simplicity, only the force
components on the foot are presented here. In the
general case, rotational torques at the feet are ne-
glected. Let (zo,y0,20) be the robot fixed body
coordinate frame in which the body is located in
the (z0,y0) plane and (z1j,y1,,21,;) denote the
coordinate frame fixed at the foot ”j”, in which
the leg j lies in the (z1, 21 ;) plane and its z axis
is normal to the support surface of the foot which
is assumed to be parallel to the (xg,yo, z0) plane.
F = [FxFyFz]T and M = [Mx My Mz denote
respectively the robot body force vector and mo-
ment vector, which results from the gravity and
the external force acting on the robot body. De-
fine f;;, fyj, and f,; as the components of the
force acting on the supporting foot ”j” in the di-
rections of zq, yg and zy, respectively. The num-
ber of supporting feet, n, can vary between 3 and
6 for an hexapod robot. The robot’s quasi-static
force/moment equation can be written as :
n
2 e
J=1 J J

Figure 9: Orientation of coordinate frame

where OP; is the position vector joining contact
point of the leg ”5” and the gravity center of the
body. The general matrix form of this equation
can be written as :

AG=W (30)
with :
G=[f1fl - fIIF ey
F7 =1 ejlyfeg” €W
W =[FT MT]" € R
(15 ... ... I 6x3n
A_<Bl Bn> € R
- 0 P, Py
B;j=OPj=| P; 0 —P € R¥3

—Pyj P 0

where I3 is the identity matrix and G is the foot
force vector, corresponding to three (G € R?)
or six (G € R'®) supporting legs. A is a coef-
ficient matrix which is a function of the positions
of the supporting feet, and B} is a skew symmet-
ric matrix consisting of (P ;, Py j, P, ;), which is
the position coordinate of the supporting foot ”j”
in (z9,Y0,20). W is a total body force/moment
vector. It is clear that Eq(30) is an underdeter-
mined system and its solution is not unique. In
other words, the feet forces have many solutions
according to the equilibrium equation. However,
the feet forces must meet the needs for the follow-
ing physical constraints, otherwise they become
invalid :
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robot walks on the ground. It results in the
following constraint;:

Vi T Iy Sifz (31)

where p is the static coefficient of friction of
the ground

2. Since the feet forces are generated from the
corresponding actuators of joints, the physi-
cal limits of the joint torques must be taken
into account. It follows that :

fz.j

. Tj . .
—Tjmax < Jj AO] fy,]

fzi

for (j = 1,..,n), where J; € R3*3 is the
Jacobian of the leg ”j”, Tjmaz € R3*1 is the
maximum joint torque vector of the leg ”j”,
and Ao € R3%3 is the orientation matrix of
(z1,5,y1,5, #1,5) with respect to (zo, yo, 20)-

< Timazx (32)

3. In order to have definite contact with the
ground, there must exist a f, ; such that :

fz,j > 0 (33)

In the following, we propose an approach
for problem size reduction, linearisation and
solving for the hexapod case. Clearly, it is dif-
ficult to solve such a nonlinear programming
problem for real-time feet force distribution
with complex constraints.

The solution of this system is developed in [2].

5 Computed-torque control

Suppose that desired trajectory X (¢) has been
selected for the arm motion. To ensure trajectory
tracking by the joint variable,errors [14] [12][16]
[15] .

e(t) = Xq— X (1) (34)

Then the overall robot arm input becomes:

r=AJ ' (X-J0)+ H (35)

X(t) = X+ ky(Xy— X) + ky(Xs— X)) (36)

This controller is shown in figures (12),(13)

yo \P 18 4% Hi by

Y3

s Xy
n
=
1\ |Gy, hl ‘jﬁ Xy
Yy
i 2a_|,)

basic
of the

Figure 10: bottom Figure 11:
View of the hexapod mechanism
leg

LGM
Coordinates joints —|

8,(i=1:6 3j=1: 3)

Plat-form Kinematic

X,Y,Z,0,.0,0,

Trajectory generator

l y

Optimal distribution
forces

F=[fx,fy,fz], i=(1:6)

Figure 12: Control model of the hexapod

5.1 Choice of PD Gains

It is usual to take the n x n matrices diagonal so
that:
k, = diaglky], k, = diag[kp;]

and k, = w2, kpi = 28wy, with ¢ the damp-
ing ratio and w, the naturel frequency. The
PD gains are usually selected for critical damp-
ing ¢é&=1. Then, to avoid exciting the resonant
mode, we should select natural frequency to half
the resonant frequency w, < w,/2.

5.2 Simulation results

In order to show the effectiveness of proposed ap-
proach, some simulations were conducted under
Matlab. We consider that the hexapod robot is
crawling in a linear trajectory (Y=3X), on an un-
even ground, in the X-Y plane. Furthermore, the
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| e ——
Xp=J(6)*0p

M.G.D

Figure 13: Control model of a leg ”j”

force tensor acting at the body center are (Fx = -
3,Fy=5Fz2=-50 [N, Mx=0,My=2,Mz=1
[Nm]). The basic mechanism, size and parameters
of Hexapod robot are shown in Figure (10) and
(11), where a = 0.25 [m], b = 0.6 [m], [; = 0.05
[m], lo = 0.20 [m], I3 = 0.30 [m] and I4 ~ 0 [m].
There are tree actuated joints 6 ;, 02 ;, and 83 ;
in the leg ”j”, for (j=1,...,6). The masses and the
inertia of links are respectively (m1 = 0.1, m2 =
0.07, m3 = 0.03 [kg]) and (Ix1 = 1.36, Iyl = 0.297,
Izl = 1.6, Ix2 = 2.1, Ty2 = 2.29, Iz2 = 0.33, Ix3
= 0.001, Iy3 = 0.05, 1z3 = 0.05 [kg cm?]); The
simulation is presented for two cycles of walking
corresponding to 15 seconds. The lifted legs do a
cycloid trajectory

6 Conclusion

In this paper, we have presented a dynamic de-
coupled control for a hexapod walking machine.
The proposed approch is based on a trajectory
planner in operational space, a real time com-
puting of the force distribution on the hexapod
legs and a joint computed torque control strategy
at the level. The force distribution problem has
been formulated in terms of non linear program-
ming problem has been solved as a quadratique
optimization problem. Simulations where given
in order to show the efectiveness of the proposed
approach.

Body.

Trajectory of the hexapode

Figure 14: View of crawling hexapod
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