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Abstract: - Association rule mining is a useful and widely used method to extract patterns from large sets of data 
especially if we deal with basket type data such as customer buying attitudes. It finds all possible relations between 
data fields , and this property is functional in many research domains; however it happens to be useless in domains like 
medicine and health as it produce lots of ineffectual rules concerning irrelevant data fields. Thus it is not likely to 
classify a disease easily by using classic rule mining algorithms. Classification algorithms, on the other hand, only 
generate decision trees or classifiers according to pre-determined target; therefore, they need to be tuned to produce 
human readable rules that can be used in decision support. In this study, an integrated approach was proposed to 
produce association rules that can be used as classifiers. Apriori algorithm was used as a base model and modified the 
algorithm to be able to generate human readable classification association rules. Some experiments with real medical 
data sets were conducted to compare our results with the results of other well known algorithms like C4.5 and Ripper.  
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1   Introduction 
Keeping customers’ (in general meaning) data in 
electronic media and using them as a part of decision 
making process has been improved fast since critical 
enhancements in data acquisition and manipulation took 
place in last decade. With this enormously large date 
warehouses it has been possible to generate ideas and 
knowledge from raw data with help of several data 
mining approaches. Lots of data mining algorithms have 
been developed with different approaches such as 
classification and association rule induction [7]. 
Classification rule mining aims to produce paths to 
classify a given instance. It is a target driven approach 
since it tries to put an instance in one of the predefined 
classes. In association rule mining, it is meant to find all 
possible rules in the data set which satisfy some user-
defined parameters. Association rule mining does not 
require and accept targets to generate rules.  

In domains like medicine and health, it is required to 
produce classification rules to determine an instance’s 
category i.e. a patient’s diagnosis [4]. Several works 
showed that neither classification rule mining nor 
association rule mining are not satisfactory to be used in 
such domains [9]. Association rule mining finds all 
possible relations between data fields, and this property 
is functional in many research domains; however it 
happens to be useless in domains like medicine and 
health as it produce lots of ineffectual rules concerning 
irrelevant data fields. Thus it is not likely to classify a 
disease easily by using classic rule mining algorithms. 

Classification algorithms, on the other hand, only 
generate decision trees or classifiers according to pre-
determined target; therefore, they need to be tuned to 
produce human readable rules that can be used in 
decision support. For these reasons integration of two 
approaches has attracted various authors now that it 
allows using both the power of association rule mining 
and the briefness of classification.  

Most of the studies relevant to rule mining have been 
some how related to the Apriori algorithm developed by 
Agrawal et al. [1]. It is one of the most widely known 
and used algorithm in the data mining literature. Our 
effort is to develop a partly-new algorithm AClass 
(stands for Apriori for Classification) to generate 
Classification Association Rules (CARs). It is again 
depended on Apriori algorithm and that is why the term 
“partly-new” was preferred to use.  

AClass algorithm integrates classification and 
association rule mining as decomposed in Section 2. The 
details about algorithm and its logic will be presented in 
Section 3. In this study, it is aimed to work mainly in 
medical domain; hence, 3 health data sets were used to 
conduct performance analyses with our algorithm. 
Results showed that our algorithm is competitive to 
other integrated algorithms. Performance results will be 
presented in Section 4. Section 5 will discuss our future 
plans and give a brief conclusion. 
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2   Problem Decomposition 
Considering data representation in medical domain, it is 
suggested to have a data set which includes number  of 
transactions about patients’ measured values. Let D be 
the set of all transactions, A be the set of all attributes 
i.e. fields in data set. Then the notation for association 
rules is used as follows: YX ⇒  where AX ⊂ , 

AY ⊂  and =∩YX φ . YX ⇒  holds with 
confidence c if  c% of transactions in D that contain X 
also contain Y. YX ⇒  has a support value of s if s% of 
transactions in D contain YX ∪ . Let C be the set of all 
possible classes which are used to categorize 
transactions in D , where AC ⊂ . Then the rule YX ⇒  
is said to be classification association rule if CY ⊂ . It 
can be stressed that Y needs to consist of only one 

AAi ∈ since any transaction can not have multiple class 
labels. Original Apriori algorithm is more general in that 
it allows a consequent to have more than one item; thus,  
some modifications had to been done to restrict 
consequents to be size of one as mentioned above.  

In real life problems, attributes come in variety of 
formats like categorical or continues values whereas 
AClass algorithm only accepts 0 and 1 values. Therefore 
Discretization methods were used to handle different 
formats. For categorical attributes, new attributes, which 
will have a value of 1 if the original attribute has that 
value and 0 if it does not, for each value of the original 
attribute were added. Intervals for continues attributes 
were used and same logic was applied as with 
categorical attributes. Intervals can be determined by 
several methods. It is important to take account the 
information loss and rule accumulation factors while 
deciding. Further details can be obtained from [2]. 

It is possible to use two stage approach to generate 
CARs. In this approach all possible CARs are first 
generated, and then some purification strategies are 
applied to build a classifier. Nevertheless, AClass prunes 
the rules just before they are generated. After each 
frequent itemset (the term ‘itemset’ is employed to 
indicate set of attributes as it is used in most of other 
studies) that satisfies user-defined support value is 
created, rule production immediately takes place. If a 
CAR is generated with sufficient confidence value then 
that frequent itemset is removed from hash-tree to 
prevent any superset of that set is considered as a new 
frequent itemset. Other run-time pruning strategies can 
be found at [3].  

 
 

3   AClass Algorithm 
AClass algorithm generates pruned CARs in one stage 
instead of first producing and then pruning; even so, 
sections describing these two tasks were separated to 

provide better understanding. At the end of main process 
a classifier is created and the only task remaining is the 
ordering rules space. Rules are ordered according to their 
confidence, support, and length. Details about these 
stages will be explained in following three sections. 
 
 
3.1 Generating CARs 
AClass algorithm uses almost same logic as Apriori to 
produce frequent itemsets and rules except some extra 
controlling tasks to determine whether a frequent itemset 
can offspring a CAR or not. After each frequent itemset 
is generated, it is controlled to certify that it contains one 
of the class attribute. In case of being unable to find any 
class attribute in a frequent itemset, this itemset is not 
sent to rule production procedure.  

Attribute names are treated as integer values to 
simplify operations. They are in ascending order and 
class attributes are placed at the end. Since itemsets also 
contains attribute names in ascending order it is easy to 
check whether an itemset includes a class attribute as 
class attribute will always be last item. 

Hash-tree data structure is used to store itemsets and 
with a subset function, support of each itemset is 
counted by traveling through hash-tree. At each step, 
candidates are generated by merging prefound frequent 
itemsets at previous step, and then their support values 
are counted. Any itemset having a support value below 
the user-defined threshold is removed from hash-tree. 
Inasmuch as next group of itemsets will be formed from 
previous itemsets placed in the hash-tree, it is prevented 
that any supersets of itemsets with low support will 
appear in new candidate group. These steps are related to 
following simple logic. Let ),( YX  be an itemset with a 

support value 1S , and ),,( ZYX with 2S . Since 
),,( ZYX is a superset of ),( YX , their support values 

always hold the inequality 21 SS ≥ . That is if 1S  is 
below the threshold, 2S has to be below, too.  

Although we only generate rules from itemsets which 
include one of the class attributes, we can not remove an 
itemset with no class attribute for the reason that an 
itemset containing class attribute may be formed at next 
step from this one. Let ,CZ ∈  and CYX ∉, . We can 
merge two itemset ),( ZX  and ),( YX  to create a new 
itemset ),,( ZYX which also contains class attribute Z . 
 
 
3.2 Pruning CARs 
AClass purifies rule space as it generates new rules. Its 
main pruning strategy depends on near-equivalence of 
support values. An itemset’s support will be nearly equal 
to one of its subsets, and never greater than. This fact 
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introduces the approach of omitting rules with supersets 
in their antecedent. For example, suppose a CAR 

ZX ⇒  was already generated with a sufficient support 
and confidence value. It is obvious that rule ZX ⇒ , 
will comprise more transactions in D than ZYX ⇒, by 
the idea mention above. That is there is no need to 
include rule ZYX ⇒, in classifier since the rule 

ZX ⇒ can already be applied to all transactions that 
will be covered by latter rule. However it is more likely 
that confidence of the rule ZYX ⇒, will be greater 
than the first one. This is a trade-off between effects of 
support and confidence in total accuracy of classifier. 
This problem was overcome by introducing a new 
confidence threshold that will determine whether a 
superset will be omitted or not. If a rule is generated 
with confidence above our threshold which is usually 
greater than the original user-defined minimum 
confidence value, its constructor itemset will be 
removed from hash-tree to omit new rules with supersets 
in their antecedent. Otherwise, that is confidence value 
is below our new threshold, itemset will remain in hash-
tree. 
 
 
3.3 Ordering CARs and Building Classifier 
There are several methods applied in literature to order 
rule space such as CSA, WRA, Laplace Accuracy, and 

2χ testing [5]. In this work, CSA (confidence, support, 
and size of antecedent) approach was used. The first 
factor that determines rules’ order is their confidence 
value: the higher rule’s confidence is, the lower its order 
number is. If we have two rules having exactly same 
confidence then we look for their supports. Again higher 
support is preferred. Finally, for the rules with same 
confidence and support, the smaller rule is placed before 
the longer one.  

Algorithm does not involve any further pruning or 
manipulating tasks after ordering is completed. With 
ordered rule space and a default class, which is the most 
seen class in data set, a classifier is presented at the end. 
Classifier is applied to test data line by line. That is the 
first rule in classifier is tried to determine a transaction’s 
class and if it is not applicable, the second one is 
attempted, then the third one, and finally default class is 
assigned to transaction. 

A pseudo code for AClass algorithm is presented on 
Figure 1. FIk denotes Frequent Itemsets with size k. 
PreCank is the set of candidates with size k which are 
not pruned; Cank is the set of final candidates. D is the 
set of training data. C is the set of all class attributes and 
c is a class attribute in C. can.sup denotes the support of 
a single candidate in Cank. Treashold is our new control 

value to decide to remove a candidate after successful 
rule generation.  
 
Create FI1; 
For (k=2; FIk-1 φ≠ ; k++) { 

//Generate non-pruned candidates from 
//previous frequent itemsets 
PreCank = CandidateGenerate (FIk-1);  
//Prune Pre-Candidates to create candidates 
Cank = CandidatePrune (PreCank); 
 
ForAll Transaction in D { 
    Count candidates and calculate support; 
} End ForAll 

 
ForAll Candidates can ∈Cank { 

IF (can.sup >= MinSup) { 
Add can to FIk; 
IF (c ∈ C | c ∈ can) { 

//Generate rule from candidate and return 
//confidence value 
Conf = GenerateClassAssRule (can); 
IF (Conf >= Treashold) { 

Remove can from Hash-Tree; 
} 

} 
} 
Else { 

Remove can from Hash-Tree; 
} End IF 

} End ForAll 
} End For 
 
//Build classifier 
OrderRules (Rule Space); 
PrintClassifier (Rule Space); 
 

Fig. 1: Algorithm AClass 
 
4   Experimental Results 
For performance testing several health related data sets 
from UCI ML repository were used. All experiments are 
performed on a 2.8GHz Pentium-4 PC with 1GB main 
memory on which Linux Suse distribution is running. 
Each algorithm is obtained from its author and used with 
default configurations.  

AClass algorithm was tested against C4.5 [10], 
Ripper [6], and Apriori-TFPC [5]. The first two 
algorithms are well known classification systems which 
are also qualified to generate classification rules. The 
last one is very similar to AClass algorithm as it is also 
based on Apriori except data structure used, pruning and 
ordering steps applied. All approaches are capable to 
generate rules that can classify transactions. 
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No time analysis but only accuracy experiments were 
conducted Accuracy results are shown on Table. 1. 
Details about the data sets used are given on Table 2. 
50/50 training/test data approach was used for accuracy 
testing. Each data set was divided into two parts. The 
first part was used for training the algorithm and the 
second part for testing rules generated. AClass and 
Apriori-TFPC algorithms were run with support and 
confidence values of %20, %90 respectively. Other 
algorithms are used with their default configurations. 
Only for ‘allbp’ data set, it was needed to decrease 
support value to %5 and confidence value to %70 since 
one of the classes was dominant and it was the only way 
to produce rules for other classes. 

Data sets were cleaned and discretized before using. 
For algorithms C4.5 and Ripper, which are capable of 
using continuous values, both discretized and non-
discretized data sets were used and the best results were 
presented.  

 
 

Table.1: Accuracy results for each algorithm 
 

Data Set Apriori-TFPC C4.5 Ripper AClass 
Allbp 98.15 89.4 91.8 98.15 
wdbc 87.67 94.7 93.68 93.33 
breast 97.94 97.7 95.91 97.95 
AVGR. 94.59 93.93 93.8 96.48 

 
 

Table.2: Data sets used in accuracy tests 
 

Data Set  

allbp 

Thyroid disease records. After cleaned it 
consists 1946 instances and 13 attributes 
including class attribute. 50 attributes after 
discretization. 

wdbc 

Wisconsin diagnostic breast cancer 
records with 569 instances and 31 
attributes including class attribute. 130 
attributes after discretization. 

breast 
Wisconsin breast cancer records with 683 
instances and 10 attributes including class 
attribute. 30 attributes after discretization. 

 
 

5   Conclusion and Future Work 
AClass algorithm which depends on well known 
algorithm Apriori is intended to generate classification 
association rules and, as accuracy results show, it 
achieves high accuracy points especially when compared 
with ordinary classification approaches. Association rule 
mining is a powerful technique that can handle all kind 
of pattern in data. However for domains like medicine 

and health, it is important to be able to classify 
transactions. AClass algorithm is an integrated approach 
and generates association rules which are capable of 
classification with high accuracy levels. 

It will be also interesting to improve time 
consumption value and scalability of algorithm in the 
future works. Testing AClass against other well known 
approaches such as CMAR [8], CBA [9] with more data 
sets is also planned. At this stage, only real life data from 
medical domain were used to analyze its efficiency in 
this domain. It is also possible to use synthetic data sets 
to conduct time performance experiments. Parallelization 
of algorithm to be used on very large data sets is one of 
our main goals.   
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