
Generating Classification Association Rules with Modified Apriori
Algorithm

B. TUNC and H. DAG

Computational Science and Engineering Department,
Istanbul Technical University (ITU),

Maslak, 34469
TURKEY

Abstract: - Association rule mining is a useful and widely used method to extract patterns from large sets of data
especially if we deal with basket type data such as customer buying attitudes. It finds all possible relations between
data fields , and this property is functional in many research domains; however it happens to be useless in domains like
medicine and health as it produce lots of ineffectual rules concerning irrelevant data fields. Thus it is not likely to
classify a disease easily by using classic rule mining algorithms. Classification algorithms, on the other hand, only
generate decision trees or classifiers according to pre-determined target; therefore, they need to be tuned to produce
human readable rules that can be used in decision support. In this study, an integrated approach was proposed to
produce association rules that can be used as classifiers. Apriori algorithm was used as a base model and modified the
algorithm to be able to generate human readable classification association rules. Some experiments with real medical
data sets were conducted to compare our results with the results of other well known algorithms like C4.5 and Ripper.

Key-Words: Data mining, Association rules, Classification, Medical data

1 Introduction
Keeping customers’ (in general meaning) data in
electronic media and using them as a part of decision
making process has been improved fast since critical
enhancements in data acquisition and manipulation took
place in last decade. With this enormously large date
warehouses it has been possible to generate ideas and
knowledge from raw data with help of several data
mining approaches. Lots of data mining algorithms have
been developed with different approaches such as
classification and association rule induction [7].
Classification rule mining aims to produce paths to
classify a given instance. It is a target driven approach
since it tries to put an instance in one of the predefined
classes. In association rule mining, it is meant to find all
possible rules in the data set which satisfy some user-
defined parameters. Association rule mining does not
require and accept targets to generate rules.

In domains like medicine and health, it is required to
produce classification rules to determine an instance’s
category i.e. a patient’s diagnosis [4]. Several works
showed that neither classification rule mining nor
association rule mining are not satisfactory to be used in
such domains [9]. Association rule mining finds all
possible relations between data fields, and this property
is functional in many research domains; however it
happens to be useless in domains like medicine and
health as it produce lots of ineffectual rules concerning
irrelevant data fields. Thus it is not likely to classify a
disease easily by using classic rule mining algorithms.

Classification algorithms, on the other hand, only
generate decision trees or classifiers according to pre-
determined target; therefore, they need to be tuned to
produce human readable rules that can be used in
decision support. For these reasons integration of two
approaches has attracted various authors now that it
allows using both the power of association rule mining
and the briefness of classification.

Most of the studies relevant to rule mining have been
some how related to the Apriori algorithm developed by
Agrawal et al. [1]. It is one of the most widely known
and used algorithm in the data mining literature. Our
effort is to develop a partly-new algorithm AClass
(stands for Apriori for Classification) to generate
Classification Association Rules (CARs). It is again
depended on Apriori algorithm and that is why the term
“partly-new” was preferred to use.

AClass algorithm integrates classification and
association rule mining as decomposed in Section 2. The
details about algorithm and its logic will be presented in
Section 3. In this study, it is aimed to work mainly in
medical domain; hence, 3 health data sets were used to
conduct performance analyses with our algorithm.
Results showed that our algorithm is competitive to
other integrated algorithms. Performance results will be
presented in Section 4. Section 5 will discuss our future
plans and give a brief conclusion.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp384-387)

2 Problem Decomposition
Considering data representation in medical domain, it is
suggested to have a data set which includes number of
transactions about patients’ measured values. Let D be
the set of all transactions, A be the set of all attributes
i.e. fields in data set. Then the notation for association
rules is used as follows: YX ⇒ where AX ⊂ ,

AY ⊂ and =∩YX φ . YX ⇒ holds with
confidence c if c% of transactions in D that contain X
also contain Y. YX ⇒ has a support value of s if s% of
transactions in D contain YX ∪ . Let C be the set of all
possible classes which are used to categorize
transactions in D , where AC ⊂ . Then the rule YX ⇒
is said to be classification association rule if CY ⊂ . It
can be stressed that Y needs to consist of only one

AAi ∈ since any transaction can not have multiple class
labels. Original Apriori algorithm is more general in that
it allows a consequent to have more than one item; thus,
some modifications had to been done to restrict
consequents to be size of one as mentioned above.

In real life problems, attributes come in variety of
formats like categorical or continues values whereas
AClass algorithm only accepts 0 and 1 values. Therefore
Discretization methods were used to handle different
formats. For categorical attributes, new attributes, which
will have a value of 1 if the original attribute has that
value and 0 if it does not, for each value of the original
attribute were added. Intervals for continues attributes
were used and same logic was applied as with
categorical attributes. Intervals can be determined by
several methods. It is important to take account the
information loss and rule accumulation factors while
deciding. Further details can be obtained from [2].

It is possible to use two stage approach to generate
CARs. In this approach all possible CARs are first
generated, and then some purification strategies are
applied to build a classifier. Nevertheless, AClass prunes
the rules just before they are generated. After each
frequent itemset (the term ‘itemset’ is employed to
indicate set of attributes as it is used in most of other
studies) that satisfies user-defined support value is
created, rule production immediately takes place. If a
CAR is generated with sufficient confidence value then
that frequent itemset is removed from hash-tree to
prevent any superset of that set is considered as a new
frequent itemset. Other run-time pruning strategies can
be found at [3].

3 AClass Algorithm
AClass algorithm generates pruned CARs in one stage
instead of first producing and then pruning; even so,
sections describing these two tasks were separated to

provide better understanding. At the end of main process
a classifier is created and the only task remaining is the
ordering rules space. Rules are ordered according to their
confidence, support, and length. Details about these
stages will be explained in following three sections.

3.1 Generating CARs
AClass algorithm uses almost same logic as Apriori to
produce frequent itemsets and rules except some extra
controlling tasks to determine whether a frequent itemset
can offspring a CAR or not. After each frequent itemset
is generated, it is controlled to certify that it contains one
of the class attribute. In case of being unable to find any
class attribute in a frequent itemset, this itemset is not
sent to rule production procedure.

Attribute names are treated as integer values to
simplify operations. They are in ascending order and
class attributes are placed at the end. Since itemsets also
contains attribute names in ascending order it is easy to
check whether an itemset includes a class attribute as
class attribute will always be last item.

Hash-tree data structure is used to store itemsets and
with a subset function, support of each itemset is
counted by traveling through hash-tree. At each step,
candidates are generated by merging prefound frequent
itemsets at previous step, and then their support values
are counted. Any itemset having a support value below
the user-defined threshold is removed from hash-tree.
Inasmuch as next group of itemsets will be formed from
previous itemsets placed in the hash-tree, it is prevented
that any supersets of itemsets with low support will
appear in new candidate group. These steps are related to
following simple logic. Let),(YX be an itemset with a

support value 1S , and),,(ZYX with 2S . Since
),,(ZYX is a superset of),(YX , their support values

always hold the inequality 21 SS ≥ . That is if 1S is
below the threshold, 2S has to be below, too.

Although we only generate rules from itemsets which
include one of the class attributes, we can not remove an
itemset with no class attribute for the reason that an
itemset containing class attribute may be formed at next
step from this one. Let ,CZ ∈ and CYX ∉, . We can
merge two itemset),(ZX and),(YX to create a new
itemset),,(ZYX which also contains class attribute Z .

3.2 Pruning CARs
AClass purifies rule space as it generates new rules. Its
main pruning strategy depends on near-equivalence of
support values. An itemset’s support will be nearly equal
to one of its subsets, and never greater than. This fact

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp384-387)

introduces the approach of omitting rules with supersets
in their antecedent. For example, suppose a CAR

ZX ⇒ was already generated with a sufficient support
and confidence value. It is obvious that rule ZX ⇒ ,
will comprise more transactions in D than ZYX ⇒, by
the idea mention above. That is there is no need to
include rule ZYX ⇒, in classifier since the rule

ZX ⇒ can already be applied to all transactions that
will be covered by latter rule. However it is more likely
that confidence of the rule ZYX ⇒, will be greater
than the first one. This is a trade-off between effects of
support and confidence in total accuracy of classifier.
This problem was overcome by introducing a new
confidence threshold that will determine whether a
superset will be omitted or not. If a rule is generated
with confidence above our threshold which is usually
greater than the original user-defined minimum
confidence value, its constructor itemset will be
removed from hash-tree to omit new rules with supersets
in their antecedent. Otherwise, that is confidence value
is below our new threshold, itemset will remain in hash-
tree.

3.3 Ordering CARs and Building Classifier
There are several methods applied in literature to order
rule space such as CSA, WRA, Laplace Accuracy, and

2χ testing [5]. In this work, CSA (confidence, support,
and size of antecedent) approach was used. The first
factor that determines rules’ order is their confidence
value: the higher rule’s confidence is, the lower its order
number is. If we have two rules having exactly same
confidence then we look for their supports. Again higher
support is preferred. Finally, for the rules with same
confidence and support, the smaller rule is placed before
the longer one.

Algorithm does not involve any further pruning or
manipulating tasks after ordering is completed. With
ordered rule space and a default class, which is the most
seen class in data set, a classifier is presented at the end.
Classifier is applied to test data line by line. That is the
first rule in classifier is tried to determine a transaction’s
class and if it is not applicable, the second one is
attempted, then the third one, and finally default class is
assigned to transaction.

A pseudo code for AClass algorithm is presented on
Figure 1. FIk denotes Frequent Itemsets with size k.
PreCank is the set of candidates with size k which are
not pruned; Cank is the set of final candidates. D is the
set of training data. C is the set of all class attributes and
c is a class attribute in C. can.sup denotes the support of
a single candidate in Cank. Treashold is our new control

value to decide to remove a candidate after successful
rule generation.

Create FI1;
For (k=2; FIk-1 φ≠ ; k++) {

//Generate non-pruned candidates from
//previous frequent itemsets
PreCank = CandidateGenerate (FIk-1);
//Prune Pre-Candidates to create candidates
Cank = CandidatePrune (PreCank);

ForAll Transaction in D {
 Count candidates and calculate support;
} End ForAll

ForAll Candidates can ∈Cank {

IF (can.sup >= MinSup) {
Add can to FIk;
IF (c ∈ C | c ∈ can) {

//Generate rule from candidate and return
//confidence value
Conf = GenerateClassAssRule (can);
IF (Conf >= Treashold) {

Remove can from Hash-Tree;
}

}
}
Else {

Remove can from Hash-Tree;
} End IF

} End ForAll
} End For

//Build classifier
OrderRules (Rule Space);
PrintClassifier (Rule Space);

Fig. 1: Algorithm AClass

4 Experimental Results
For performance testing several health related data sets
from UCI ML repository were used. All experiments are
performed on a 2.8GHz Pentium-4 PC with 1GB main
memory on which Linux Suse distribution is running.
Each algorithm is obtained from its author and used with
default configurations.

AClass algorithm was tested against C4.5 [10],
Ripper [6], and Apriori-TFPC [5]. The first two
algorithms are well known classification systems which
are also qualified to generate classification rules. The
last one is very similar to AClass algorithm as it is also
based on Apriori except data structure used, pruning and
ordering steps applied. All approaches are capable to
generate rules that can classify transactions.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp384-387)

No time analysis but only accuracy experiments were
conducted Accuracy results are shown on Table. 1.
Details about the data sets used are given on Table 2.
50/50 training/test data approach was used for accuracy
testing. Each data set was divided into two parts. The
first part was used for training the algorithm and the
second part for testing rules generated. AClass and
Apriori-TFPC algorithms were run with support and
confidence values of %20, %90 respectively. Other
algorithms are used with their default configurations.
Only for ‘allbp’ data set, it was needed to decrease
support value to %5 and confidence value to %70 since
one of the classes was dominant and it was the only way
to produce rules for other classes.

Data sets were cleaned and discretized before using.
For algorithms C4.5 and Ripper, which are capable of
using continuous values, both discretized and non-
discretized data sets were used and the best results were
presented.

Table.1: Accuracy results for each algorithm

Data Set Apriori-TFPC C4.5 Ripper AClass
Allbp 98.15 89.4 91.8 98.15
wdbc 87.67 94.7 93.68 93.33
breast 97.94 97.7 95.91 97.95
AVGR. 94.59 93.93 93.8 96.48

Table.2: Data sets used in accuracy tests

Data Set

allbp

Thyroid disease records. After cleaned it
consists 1946 instances and 13 attributes
including class attribute. 50 attributes after
discretization.

wdbc

Wisconsin diagnostic breast cancer
records with 569 instances and 31
attributes including class attribute. 130
attributes after discretization.

breast
Wisconsin breast cancer records with 683
instances and 10 attributes including class
attribute. 30 attributes after discretization.

5 Conclusion and Future Work
AClass algorithm which depends on well known
algorithm Apriori is intended to generate classification
association rules and, as accuracy results show, it
achieves high accuracy points especially when compared
with ordinary classification approaches. Association rule
mining is a powerful technique that can handle all kind
of pattern in data. However for domains like medicine

and health, it is important to be able to classify
transactions. AClass algorithm is an integrated approach
and generates association rules which are capable of
classification with high accuracy levels.

It will be also interesting to improve time
consumption value and scalability of algorithm in the
future works. Testing AClass against other well known
approaches such as CMAR [8], CBA [9] with more data
sets is also planned. At this stage, only real life data from
medical domain were used to analyze its efficiency in
this domain. It is also possible to use synthetic data sets
to conduct time performance experiments. Parallelization
of algorithm to be used on very large data sets is one of
our main goals.

Acknowledge: Authors wish to acknowledge the
financial support from the State Planning Organization
of Turkey. They also appreciate technical support from
ITU Informatics Institute, High Performance Computing
Center (HPCC) where all experiments were conducted.

References:
[1] R. Agrawal, R. Srikant, Fast algorithms for mining

association rules, IBM Research Report RJ9839,
IBM Almaden Research Center, San Jose, CA, 1993.

[2] R. Agrawal, R. Srikant, Mining quantitative
association rules in large relational tables, In Proc. of
the ACM SIGMOD International Conference on
Management of Data, 1996, pp.1-12.

[3] R. J. Bayardo, Brute-force mining of high confidence
classification rules, In Proc. of International
Conference on Knowledge Discovery and Data
Mining, 1997, pp.123-126.

[4] Krzysztof J. Cios, William Moore, Uniqueness of
medical data mining, Artificial Intelligence in
Medicine, 26(1-2), 2002, pp. 1-24.

[5] Coenen, Leng, An evaluation of approaches to
classification rule selection, In Proc. of the IEEE
ICDM, 2004, pp.359-362.

[6] W. Cohen, Fast effective rule induction, In Proc. of
the ICML, 1995, pp.115-123.

[7] Alex A. Freitas, Simon H. Lavington, Mining Very
Large Databases with Parallel Processing, Kluwer
Academic Publishers, 2000.

 [8] W. Li, J. Han, J. Pei, CMAR: Accurate and efficient
classification based on multiple class-association
rules, In Proc. of the ICDM, 2001, pp.369-376.

 [9] B. Lui, W. Hsu, Y. Ma, Integrating classification
and association rule mining, In Proc. of the KDD,
1998, pp.80-86.

[10] J. R. Quinlan, C4.5: Programs for Machine
Learning, Morgan Kaufmann, 1993.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp384-387)

