
Fault-tolerant search of container codes.∗

JUAN ROSELL
GABRIELA ANDREU

ALBERTO PÉREZ
Universidad Politécnica de Valencia

DISCA
Camino de Vera s/n,Valencia 46022

SPAIN

Abstract:This paper describes a method to locate and recognize container code characters. This method is aimed to
make more fault-tolerant a system based on tophat transformation, segmentation algorithms, filters and classifiers.
Our aim is to be able to find characters which could be shadowed or missclassified. The system has to deal with
outdoor images. Our aim is to obtain a list of characters which contains all, or as much as possible, characters of
the container’s registration number in order to recognize them. This work is part of a higher order project whose
aim is the automation of the entrance gate of a port.

Key–Words:Computer vision, segmentation, character recognition.

1 Introduction

Currently in most trading ports, gates are controlled
by human inspection and manual registration. This
process can be automated by means of computer vi-
sion and pattern recognition techniques. Such a pro-
cess should be built by developing different tech-
niques, such as image preprocessing, image segmen-
tation, feature extraction and pattern classification.
The process is complex because it has to deal with out-
door scenes, days with different climatology (sunny,
cloudy...), changes in light conditions (day, night) and
dirty or damaged containers. Digits and characters
may be clear and/or dark and some may appear framed
to distinguish them from the rest of the code. Inter-
digit distances are not either fixed. A sample image
may be seen in figure 1.

A first approach to the process of code detection is
presented in a previous work ([1]) and the overall pro-
cess is discussed also in [2]. In these works, authors
use a morphological operator called tophat ([3],[4])
to segment the images of containers. Though this
method had good results, we tried to improve its per-
formance.

Finding the suitable method to correctly process
images is a difficult task, due to the lack of general
methods that can be applied independently of the type

∗Acknowledgments:This work has been partially supported by
grant FEDER- CICYT DPI2003-09173-C02-01.

Figure 1: Sample image of a container.

of problem to be solved. As methods in computer vi-
sion always result to be ad-hoc implementations for
each problem, other steps can be applied besides those
traditional in image processing. In this article, we pro-
pose a method to take together the results of apply-
ing segmentation and classification to several images
representing the same container, in order to improve
the overall process of identifying the characters of the
container code.

In our case, as mentioned before, climatology
and light conditions can affect significantly our search
process. The difficulties that our system has to face
are: poorly contrasted simbols, shadows produced by
roofs, changing shadows at different times of the day,
errors produced by the process itself in any step (seg-
mentation, classification....).

We developed an algorithm to identify characters
belonging to the container code in one image. The

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 77

input data for this algorithm are grayscale imagesI,
beingf(x, y) the gray level of pixel located in coordi-
nates(x, y). The aim of this algorithm is identifying
the characters of the container’s code in the image.

Tests have shown, however, that taking a single
image to find the code of the container is a risk be-
cause of the difficulties mentioned, thus, we try to
find an algorithm that makes our system more fault-
tolerant. We extend the first algorithm to work with
sequences of images representing the same truck con-
tainer. This way, we diminish the influence of differ-
ent illumination in images and have a bigger chance
of finding the complete code.

For this new algorithm, we take a sequence of
grayscale imagesI, and apply the previous algorithm
for each image in the sequence. Then try to find out
from these results which the container’s code is.

If we represent asΓ(I) the set of objects found
for imageI, our method finds the elements from these
sets with a high probability of belonging to the code
of the container. Those elements appearing in most of
the images with a high confidence in each image, will
be more likely to be part of the container’s code.

We define a sequence as a set of images represent-
ing a truck container. If we callΨ the set of images of
a sequence,Ψ = {I0, I1...In}; in order to find objects
in setΓ(I0) that correspond to objects in images from
I1 to In we have to find a geometrical transformation
T0i from coordinates of imageIi into coordinates of
imageI0. This is done by superposing objects from
Ii on objects ofI0 and trying to find the location in
which, the distances of the centres of objects in both
images are minimum. To find this transformationT0i

we take advantage of the fact that the truck is mov-
ing on a flat surface, so the code will be in all images,
more or less at the same height. The final set, corre-
sponding to what we could call the segmentation of
the sequence will be denoted asSS(Ψ).

Authors of [5], present an investigation which is
currently under development. The aim of the authors
of this paper is to use the optical flow in order to shrink
the area where the container code could be found and
speed up the segmentation process; also, this would
help us to remove noisy elements and gain in accu-
racy. However, this method has proved to be time
consuming, and currently efforts are done in order to
optimize it. In a future, we expect both investigations
to merge.

We have organized the paper as follows, in sec-
tion 2 we explain briefly the algorithm used to iden-
tify characters in one single image, in section 3 we
describe the algorithm used to process the sequences
of images, in section 4 we will describe the data we
used, in section 5 we describe the experiments done;
in section 6 we show the results we obtained in the

experiments and in section 7 we discuss our conclu-
sions.

2 Image processing
In this section we explain how we process images on
their own. This processing is aimed to create the set
Γ(I) for each individual imageI, by extracting char-
acters of the code of the container represented in the
image. We propose a process to extract and identify
characters in images representing truck containers that
can be divided in four phases (see figure 2).

Figure 2: The recognition process step by step.

Each image is first preprocessed by using tophat,
as a result, we will have two different images, one
Iwhite the result of applying white tophat andIblack

the result of applying black tophat.
After preprocessing, images are segmented a

number of times depending on the segmentation al-
gorithm used, this way we can be sure we will have a
more robust process. The result of the segmentation
process is a set of objects (denoted byΥ(Iblack, S,K)
andΥ(Iwhite, S,K), whereS represents a segmenta-
tion algorithm andK is a set of parameterski, where
eachki corresponds to an instantation ofS.). These
two sets, however, contain objects which are irrel-
evant for our search of characters, and we need to
define a way to clean up these objects. The way is
to implement filters. Applying a filter toΥ(I, S,K)
means substracting a determined set of objects∆
from Υ(I, S,K), such that∆ ⊆ Υ(I, S,K) where
∆ = {p ∈ Υ(I, S,K) : σ(p) = 0}. We call the func-
tion σ(p) the filtering function, which will be a map
Υ(I, S,K) → {0, 1}. The filters are aimed to remove
objects which do not fit in several constraints, for in-
stance, shape, contrast, represent a character... If we
have a family of filtersΣ, we can define the final set,
result of the segmentation and the filtering as:

Γ(Iwhite, S,K,Σ) = {Υ(Iwhite, S,K) −
⋃

∆σi∈Σ}

Γ(Iblack, S,K,Σ) = {Υ(Iblack, S,K) −
⋃

∆σi∈Σ}

We decide which is the correct color of the image
by keeping the set which contains more objects with a
confidence over80%.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 78

Unfortunately, characters can be missed in this
process due to shadows in the image, due to damages
in their location on the container or errors in the pro-
cess. Also, brights on the container, or other elements
may appear classified as objects, and this is an unde-
sired effect. We need a method to improve the resis-
tance of the system to such errors.

3 Sequence processing
In this section we explain how we process a sequence
of images to extract the container’s code from it. We
first try to group objects (which are the result of ap-
plying the previous algorithm to each image in the se-
quence) in each image into clusters of close objects.
This way, we can use properties of clusters such as the
centre of mass of the cluster to faster overlap objects
of a reference image with the objects in the following
images.

3.1 Clustering objects
Code simbols in the container appear following a de-
fined structure. Though we don’t know prior to take
the picture, what kind of lay-out the characters will
have and either the amount of valid objects in the im-
age, it is true that, after the processing, we can apply
some knoweledge on the resulting objects in order to
get rid of those which are not likely to be in the code,
but have gone trough up to this stage of the process-
ing. For instance, simbols belonging to the code ap-
pear close one to each other; we can use this feature to
group objects in clusters and use only the valid clus-
ter, i.e. the cluster with the code, to perform further
calculations.

Given an imageI, we obtain the setΓ(I) =
{r0, r1..rn}, the set of objects found in the segmen-
tation of imageI that do meet some constraints (as
mentioned in the previous section). We calculate re-
cursively the clusters ofΓ(I), denoted byκk, as sets
containing objectsri ∈ Γ(I) whose distance must be
less or equal to a givenǫ. The algorithm we use to
create this clusters is as follows:

• step 1. Initialize the clusters.∀ ri ∈ Γ(I) : κi =
{ri}.

• step 2.∀ κi.

• step 3.∀ rm ∈ κi.

• step 4. if∃ rp : rp ∈ κj ∧ distance(rm, rp) <

ǫ ∧ p <> m ∧ j <> m → κi = κj ∪ κi.

• step 5. go to step 2 until there are no more
changes in the setsκi.

• step 6. Choose theκi that contains the biggest
amount of objects.

After running this algorithm, the cluster with the
biggest amount of objects will contain the truck con-
tainer code. We calculate the centre of mass of this
cluster. This centre of mass will be useful in the fol-
lowing algorithm, when we try to match objects in one
image with objects in the other.

3.2 Sequence processing
Image sequence processing is a post-process method
that we apply to be able to improve performance. One
of the drawbacks of our system is that it can segment
characters but then fail when classifying them, or a
character can be missed because of a shadow; losing
accuracy. In an effort to avoid this problem, we take
advantage of the fact that we can take more than one
picture per container. Some examples of sequences of
images can be seen in figure 3.

(a) 1st image in se-
quence

(b) 2nd image in se-
quence

(c) 3rd image in se-
quence

(d) 1st image in se-
quence

(e) 2nd image in se-
quence

(f) 3rd image in se-
quence

(g) 1st image in se-
quence

(h) 2nd image in se-
quence

(i) 3rd image in se-
quence

Figure 3: Samples of sequences of a container, taken
at different hours of the day.

We develop an algorithm to segment and classify
characters in each image and then try to extract from
the complete set the characters of the container. We
have the advantage that container codes will always,
more or less, appear at the same height in pictures,
but moved some pixels left or right, depending how
the lorry was moving. This gave us the idea of trying
to find a transformation that could move objects ap-
pearing in successive images to the location of objects

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 79

in the first one of a sequence. Giving us the possibility
of correcting errors such as:

1 Loss of characters because of shadows.

2 Irrelevant objects that appear classified as char-
acters. They will be called from now on noisy
characters.

3 Missclasifed characters.

For the first problem, shadows, we trust that, by
taking several pictures of the container, we will be
able to find the characters of the code in most of the
cases. If, eventually, any character is shadowed in any
image, it is likely we have found it in previous pic-
tures, so, by checking all them together, we can have
it in the final solution. The second issue, is easier to
achieve, irrelevant objects classified as characters will
not appear in more than one or two images; thus, if
we set the number of images to3 or more we can get
rid of all of them in the final solution. The last prob-
lem has to do with characters which are missclasified
due to, for instance, a bad segmentation of the image.
As in the first case, if such a problem appears, we can
still know which is the correct one by keeping only
characters which appeared in more images.

The algorithm takes a set of images representing
the same container and processes them as explained
later. For each image we calculate the centre of mass
as explained in the previous point. Each objectp in
the solution setSS(Ψ) has an associated counter to
know how many times it appears in different images
(accessed asp.counter in the algorithm). Also, it has
a confidence value calculated as the average of its con-
fidence in all pictures where it has appeared (accessed
asp.confidence). An auxiliar functionoverlap(p, q)
is used, which returnsTRUE in case objectsp andq

overlap one on each other. Functionsimbol(q) returns
the simbol associated to this object by the classifier.

A previous step before applying the algorithm is
not taking into account all images for which the colour
was wrongly detected. This step just takes an average
of pictures voting characters are clear and those voting
characters are dark; those which lose the voting are
discarded.

Formally, the algorithm is defined as follows:

1 Given a set of imagesΨ = {I0, I1, I2, ...In}, we
take a reference imageI0, that will contain the
entire code.

2 SS(Ψ) = Γ(I0).

3 Calculate the centre of mass ofΓ(I0).

4 ∀ Ii ∈ Ψ, i > 0.

4.1 Calculate the centre of mass ofΓ(Ii).

4.2 Find a geometrical translationT , fromΓ(Ii) into
Γ(I0) such that, by applyingT we are sure that
the most of the objects ofΓ(Ii) are overlapping
objects ofΓ(I0).

4.3 ∀ p ∈ SS(Ψ), p.counter = p.counter+1 ⇐⇒
∃ q ∈ Γ(Ii) : overlap(p, q) = 1 ∧ simbol(p) =
simbol(q)

4.4 SS(Ψ) = SS(Ψ)
⋃
{q ∈ Γ(Ii) :6 ∃ p ∈ SS(Ψ) :

overlap(p, q)

5 Go to step 3.

6 Calculate the average confidence as:∀ p ∈
SS(Ψ) :

p.confidence =
∑

(qi.confidence)

p.counter
,∀qi ∈

Ij, j <> 0 ∧ overlap(p, q)

It must be remarked than, in the case anyIi ∈ Ψ
is empty or does not contain the suitable objects, it is
removed from the set and not used in the algorithm.
For instance, an image could contain no object.

We implemented the setSS(Ψ) with a hash table;
in order to store information about which objects ap-
pear, which overlap, which are new and the classifier
confidence they have. With these structure we have
objects ordered and easily reachable. Our hash table
stores characters from ’A’ to ’Z’ and from ’0’ to ’9’.

4 DATA

We used51 real images to perform our experiments,
corresponding to17 containers. These images repre-
sent truck containers and have a size of720 × 574
pixels in gray levels. They were acquired under real
conditions in the admission gate of the port of Valen-
cia; in several days under different light conditions.
Digits and characters can be clear or dark and they
appear in both plain and non-plain surfaces. We se-
lected randomly a set from a large amount of pictures
and assured all variability was represented in this set
of pictures (sunny or cloudy days, daytime or night-
time, damaged containers...).

We used pictures which shew the complete code.
This is not an important constraint, if we consider that
we can take a sequence of pictures as big as we want;
and that, we can set the camera wherever it is more
useful. But it makes it easy for the algorithm to detect
when most objects are fitted.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 80

5 EXPERIMENTS
We applied tophat with 6 repetitions either for clear
as for dark characters. We used LAT ([6]) in our ex-
periments, in [7] we show a comparison of other algo-
rithms’ performance. It was applied several times to
each image, varying its parameters in order to cover
all possible ilumination situations. Also, it had to be
executed twice, once seeking for clear characters and
again, seeking for dark characters. This was done this
way, because segmentation algorithms were not pro-
vided with concrete information about each image (il-
lumination, number of characters...).

A k-Nearest Neighbours classifier was trained us-
ing 654 real images of trucks what means a total of
9810 characters. We gathered288 features repre-
senting gray levels from each normalized character
(12 × 24 pixels). We applied PCA ([8]) to reduce
the dimesionality of data, and at the end, only60 fea-
tures were used. When classifying objects with k-NN
neighbours, we usedk = 3. The contrast value was
calculated experimentally and we tried to set it low
enough as to not lose shady characters but also high
enough to filter as much noise as possible.

We check whether objects have been correctly
found in a similar way as proporse in [7]. The dif-
ference is that now, we are not only considering the
inclusion boxes of the objects but also if the label as-
signed to them is correct or not. Any object that meets
both conditions is considered a hit. We compare the
result of applying the algorithm to a sequence of im-
ages with the result of each image on their own.

In the experiments we took two different results,
on one hand, we have results for each individual im-
age. We counted how many valid objects were found
and how many irrelevant objects had gone successfuly
through filters. On the other side, the other result we
obtained was the number of valid and irrevelant ob-
jects found by taking the entire sequence of images
and analyzing it with the algorithm.

6 RESULTS
In table 1, results are shown for some sequences.

Under the columnobjects, we show the number of
valid objects in the container, that is, the number of
characters in the container’s code. Under columnsim-
age0 to image3, we show results for each image on
its own, first number stands for the number of valid
objects found in this image, and the second number
stands for the number of noisy objects that could not
be removed; the addition of both numbers gives the
amount of objects found in the picture. In case a se-
quence had less than 4 images, we filled the corre-
sponding cells with dashes. The last column, gives

the same information after applying the sequence al-
gorithm.

In each row we show results for each image of a
sequence and the result for the sequence by applying
the sequence algorithm. For instance, first row cor-
responds to first sequence. For first image of this se-
quence, we obtain21 objects,15 of them correspond
to the code and the others are noisy objects, that is,
30% of the objects are noisy objects; for the second
image we obtain again15 correct objects and3 noisy
objects; on the other side, by applying the sequence al-
gorithm we obtain15 objects that correspond exactly
to the container’s code. In sequence8 however, the
sequence algorithm loses3 characters of the solution,
and in any of the images of the sequence on their own
we would have more hits, but, on the other side, the
result of the algorithm has no noisy object and it is dif-
ficult to choose which picture in any sequence would
have the best results.

Sequence Objects Img0 Img1 Img2 Process
H N H N H N H N

1 15 15 6 15 3 11 0 15 0
2 17 14 5 12 3 11 6 15 1
3 15 12 22 12 10 11 5 12 0
4 15 14 2 14 2 4 0 11 1
5 15 15 5 15 10 9 6 13 3
6 15 10 10 13 5 14 4 11 3
7 15 13 16 10 9 0 5 5 0
8 15 13 3 15 0 14 1 12 0
9 15 14 6 14 6 11 4 13 2
10 15 15 6 15 4 11 3 15 1
11 16 13 4 15 4 12 2 11 2
12 15 10 13 11 3 11 0 11 0
13 17 12 10 14 10 11 7 12 4
14 15 15 16 15 4 - - 15 0
15 15 14 13 14 12 13 9 14 2
16 17 16 1 16 9 - - 15 1
17 15 15 18 15 13 - - 15 2

Table 1: Comparison of results searching in one pic-
ture of the sequence or in the complete sequence as a
unit.

Though using the sequence algorithm may be
seen as adding a time penalty to the execution, it may
bee seen that, it is impossible to find all objects just
with one image. In addtion, the process itself can be
implemented in such a way, that time penalty does not
influence the final result. It could, for instance, be
divided into two different processes, one taking pic-
tures, segmenting them and locating objects on them;
and the other one, taking these objects and comparing
them with the previous following the sequence algo-
rithm presented now. These two processes follow the
producer-consumer paradigm and that can be easily
parallelized.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 81

7 CONCLUSIONS
We present a method for detecting container’s regis-
tration number by identifying simbols in different im-
ages in a sequence of the same container passing in
front of a camera. This process improves significantly
the amount of container’s codes that we can identify.

We used images selected randomly from a large
set of real images. Our effort was driven by the fact
that we wanted to adjust the process, in such a way,
that we did not miss any character (or the lowest pos-
sible amount) in the registration number. Our evalu-
ation of the different solutions then penalties the lose
of characters.

Further efforts will focus on improving execution
times by parallelizing the execution of the algorithm
to take advantage that it can be divided into two inde-
pendent execution flows, and being able to improve
the accuracy on detecting characters with low con-
trast, by better characterizing noise in the classifier.

References:

[1] Salvador, I., Andreu, G., Pérez, A.: Detection of
identifier codes in containers. Proc. SNRFAI-2001.
Castellón, Spain. May de 2001.1 (2001) 119–124

[2] Salvador, I., Andreu, G., Pérez, A.: Preprocess-
ing and recognition of characters in container codes.
ICPR2002, Canada, 2002 (2002)

[3] Woods, R.G.R.: Threshold selection using a minimal
histogram entropy difference. Addison-Wesley (1993)

[4] Soille, P.: Morphological image analysis: Principles
and applications. Springer Verlag (1999)

[5] Atienza, V., Rodas, A., Andreu, G., Pérez, A.: Op-
tical flow-based segmentation of containers for auto-
matic code recognition. Lecture Notes in Computer
Science3686 (2005) 636–645

[6] Kirby, R.L., Rosenfeld, A.: A note on the use of
(gray level, local average gray level) space as an aid
in threshold selection. IEEE Transactions on Systems,
Man and Cybernetics SMC-9 (1979) 860–864

[7] Rosell, J., Pérez, A., Andreu, G.: Segmentation algo-
rithms for extraction of identifier codes in containers.
Int. Conf. (VISAPP-2006), Portugal (2006) 375–380

[8] Fukunaga, K.: Statistical Pattern Recognition. Second
edition edn. Academic Press (1990)

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 82

