
Optimized Agent Based System Performance - A Role Oriented
Approach

SOUMYA SURAVITA1, PRABHAT RANJAN 1, R.K. SINGH 2 & A. K. MISRA1

1Department of Computer Science & Engineering,
2 Electrical Engineering Departments,

Motilal Nehru National Institute of Technology,
Allahabad -211004, Uttar Pradesh, INDIA

Abstract: - In this paper, we propose a system performance-efficient clustering and mapping algorithm for
agent-based system. Optimal cluster size is obtained by user-defined performance parameter (η).This presents
a novel systematic approach to optimize the system performance by exploiting the relationships and
dependencies among roles as well as clustering of roles and mapping criteria between roles to agents. The
concept of roles has been advocated to model application domain agents, which evolve dynamically during
their lifespan. These agents may acquire new roles and drop old roles in order to comply with the
requirements, where as each role and their instances are associated during the whole lifespan. The concept of
clustering of role and mapping the role to agent by analyzing Interaction among Roles, Resource
Dependencies among Roles and Relationship among Roles is presented in this paper.

Keywords: - Role, Lifespan, Role Interaction, System Performance, Clustering and Mapping of Role.

1 Introduction
Roles are essential concept in agent-oriented
software engineering (AOSE). The role has the
active property to cooperate with other roles for
accomplishing the task. The roles define expected
behaviors of the agents and are an important concept
used for different purposes like modeling of
structure of multi-agent system, modeling of
protocols and components of agent design [8,9].
The role concept is widely used in AOSE
methodologies. The concept of role has been
advocated to model application domain agents,
which evolve dynamically during their lifespan.
Understanding the relationship among roles can help
the system analyzer to refine and optimize the role
model [1]. Moreover the implicit conflict among
roles can also be identified. Identifying roles and
mapping the role to an agent are essential phases in
many proposed AOSE methodologies like GAIA [5],
PROMETHEUS [4], ROADMAP [10] and TROPOS
[3].
The existing methodologies generally do not
consider one or all of the following:

 The relationships and dependencies among
roles.

 Performance-efficient clustering of roles.
The proposed methodology considers the
relationships and dependencies among roles and the

clustering of role and mapping criteria between
roles to agents. Our previous methodology [6,7] is
used as fundamental ingredient in the new proposed
methodology. This paper concentrates mainly on the
Role models.

2 Proposed Methodology
The proposed methodology is to optimize the system
performance. An agent-based system consists of
software entities called agent, which interact with
themselves and other resources to perform goals.
Each agent plays some role in the environment. To
optimize system performance in an agents-based
system

 The relationships and dependencies among
roles are identified and analyzed.

 User-defined performance parameter (η) is
considered for optimal clustering of role.

We optimize the system performance by minimizing
the overall interaction, data transmission and
competition of shared resource between roles/agents.
The proposed clustering algorithm partitions the
overall system roles/agents into several clusters.
Optimal cluster size can be obtained by performance
parameter (η).
The clustering of overall system roles/agents is
depends on the following criteria :

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 217

mailto:soumyasuravita@yahoo.com
mailto:prabhat_r28@hotmail.com
mailto:rksingh@mnnit.ac.in
mailto:akm@mnnit.ac.in

 Frequently interaction (RI) between roles
 Closely related role (RR) on the basis of

 Performing similar nature of task
 Role capabilities
 Role dependencies

 Roles using shared resource (RSR)

In general, an agent can play more than one role,
but it is very application specific to map the role to
agent. The mapping between the role and the agent
can be one to one, one to many, many to one, or
many to many. In most cases, there may be a one-to-
one correspondence between roles and agents. But
an agent may also play some closely related roles for
purpose of convenience and modularity. The role
instances only exist in association with agent
instances. Role’s life begins when the agent acquires
it according to current condition. When condition
changes, agent droppes previous one and acquires
the new role. The agent will play different roles at
different time and in different conditions during its
life cycle.

 3 Role Model
The role model divides the goal/sub-goal into tasks
and further into sub-tasks. The sub-tasks are grouped
on the basis of relative interconnectivity and
closeness among them. The subtasks are performed
by the cooperation of fewer roles. The role model
describes the properties of a role. The role model
consists of role identification, role description, tasks
identification and agent identification/ mapping
criteria.
A role identified by its name RN. Role description
RD is composed of a set of six specific
characteristics.

i.e. RD = { RT, RA, RC, RB, RST, RCC}
Where,

RT is the Role Type
 RA is the Role valid Activation
 RC is the Role Cardinality
 RB is the Role Behavior(Norms and Rule)
 RST is the Role specific Task
 RCC is the Role certain Capabilities.

Roles Type RT is composed of a set of four specific
role of the system, each of which serves some
specific task of the system in accomplishing the
overall objective of the system.
 i.e. RT = { IR, DR, PIR, PDR}
Where,
IR is the Independent Role. An independent role may
be acquired or dropped without any consideration of

other roles.
DR is the Dependent Role. A dependents role has
some form of dependency relation with other roles.
PIR is the Partially Independent Role. A partially
independent role is performed/handled for some
specific role instance or sub-tasks independently and
all other instance of role or sub-tasks is dependent
on other role.
PDR is the Partially Dependent Role. A partially
dependent role has some specific role instance or
sub-tasks dependency relation with other role and all
other instance of role or sub-tasks is performed/
handled independently.
In Partially Independent and Partially Dependent
case, an agent may acquire or drop the role only in
case of the role instance being independent.
Understanding the dependency or relationship
among roles help the system analyzer to refine and
optimize the role model. It also optimizes system
performance in an agents-based system by analyzing
dependency or relationship among roles.
The role valid activation RA gives number of times a
role can be taken by an agent. The cardinality of role
RC specifies the maximum limit on its instances at
any time with any agent. The behavior of role RB
describes that the role requires certain nature of
behavior to perform a task. There are some specific
norms and rules to perform a task. In some cases, the
role behavior conflict. For example, in an
organization if a staff member who is also a private
consultant may have conflicting job responsibility.
In this case different roles by the same person is
possible, but it would require appropriate rule and
norms to resolve the conflicting behavior. The role
specific task RST is responsible for achieving, or
helps to achieve some system specific task. The
certain capabilities of role RCC describes how well
an agent may play that role in light of the capability
it possesses. Capabilities are key to determining
exactly which role can be assigned to what tasks in
the organization.
The lifespan of a role instance is a single time
interval between its acquisition and dropping by
an agent and is represented as LRi for ith instance
of role R. The lifespan of a role R with an agent A,
denoted as LR(A), is defined as an ordered set of
one or more intervals during which the agents was
attached with instance of R.

i.e. LR(A) = {LR1, LR2 , ………….., LRn}
Where,
R1, R2……….. Rn is instances of the role R attached
to agent A. The lifespan of an agent can be defined
in terms of life it has acquired.
When we consider what kind of agents and what
mapping between agents and roles we need, there

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 218

are some considerations proposed by Chen [2]:
 If the roles are distributed at different

places, they are not suitable to be played
by one agent.

 We can make an agent to play roles to
decrease the communication load of the
whole system when situations described
below occurs.

 The communications and
interactions frequently occur
between roles and that may
seriously increase the
communication load of the whole
system.
 There is great amount of data

transmissions between roles.
 For a basic mechanism to implementation

stage to resolve the competition of public
resource, we need to analyze the usage of a
public resource by agent. Because an agent
can only play a role at one time, the roles
that would be played by an agent would not
compete with the resource. However, if the
roles that the agent plays are frequently
required to serve in the system or they
require time to accomplish their tasks, this
mechanism would not be suitable. The
system would have a bottleneck in the agent,
and the performance would be reduced
seriously.

 For a simple mechanism to implementation
stage to resolve the conflict with goal
between agents, the controlling actions of
agents in timing must be considered.

Role may interact with another role only if they
belong to the same group. Interaction is done
through asynchronous message passing. If the
message fails to satisfy constraints (RT, RA, RC, RB,
RST, RCC) from any roles concerned, the message
will be rejected and action will be taken to handle
the error. The cohesion of the whole system is
maintained by the fact that role may belong to any
number of groups depending upon the above-
mentioned criteria, so that the communication
between two groups may be done by roles that
belong to the both group.
At the time of clustering of roles and mapping to
the agent we take care of the role specific
characteristics (RT, RA, RC, RB, RST, RCC), which is
describe in the role description RD.The addition and
deletion of role into cluster and mapping to agent is
permitted only when the role specific characteristics
constraints RT, RA, RC, RB, RST, RCC are valid. If
any role constraint is violated, it raises

corresponding exception.
There are five different kinds of exceptions :

 Role Relationship Exception: It is raised
when any of the role relations are violated.

 No Such Role Exception: It is thrown if a
role instance referred to, does not exist.

 Conflict Role Behavior Exception: It is
raised if such role that we are trying to add
in cluster and map to agent, may cause
conflict in other role behavior.

 Duplicate Role Exception: It is thrown if
the role instance that we are trying to add in
cluster and map to agent already exists for
the agent.

 Role Activation Exception: It is raised if a
role cannot be activated on the agent
because of its characteristics RA and RC.

4 The Proposed Algorithm

The proposed clustering and mapping methodology
is as follows:
Assumptions for our proposed algorithm are:

(i) Every role has a unique ID. Role ID is

dependent on the cluster.
(ii) Every role must come/assign into any one

the cluster type.

1. Initially find out the total number of role in the
agent based system i.e. Rn.
where,
Rn would be the total number of expected role and n
is varying from 1 to n.

2. Apply the first criteria RI representing frequent
interaction between the roles and make cluster of
the role.
 i.e. CI = {RIn, η}
Where,
CI is the cluster by apply the interaction criteria
RIn ={RI1, RI2,……., RIn} would be the total number
of expected frequent interaction specific role
η : ρ(RI) is a performance function which defines
the time of interaction between each subset of roles.
The performance function must satisfy the
constraints, that by adding role in a cluster never
decreases the performance of the system.
Formally, this is defined as follows:

If RI1, RI2 RIn are sets of role such that
 RI1 RI2 , then η(RI1) ≥ η(RI2).
The cluster size of CI is decided by performance
parameter η.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 219

3. If cluster size of CI < Rn then apply the second
criteria RSR else exit.

4. Apply the second criteria RR representing closely
related role and make cluster of the role.
 i.e. CR = { RRn , η}
Where,
CR is the cluster by apply the closely related role
criteria
RRn = {RR1, RR2, ……..,RRn} is the set of role which
is performing similar nature of task, similar role
capabilities and role dependencies.
η : ρ(RR) is a performance function which defines
the time of executing each subset of tasks by role.
The performance function must satisfy the
constraints, that the adding task never decreases the
performance of the system.

Formally, this is defined as follows:

If RR1, RR2 RRn are sets of role such that RR1
RR2 , then η(RR1) ≥ η(RR2).
The cluster size of CR is decided by performance
parameter η.

5. After applying the second criteria we find out the
intersection of cluster

i.e. CI ∩ CR
The performance function must satisfy the
constraints, that the removal of role from CI and CR
and assigning it to intersection of cluster CI ∩ CR
does not decreases the performance of the system.
If cluster size of (CI + CR + CI ∩ CR) < Rn then
apply the third criteria RSR else only apply first (RI)
and second (RR) criteria is applied and exit.

6. Apply the third criteria RSR representing roles
using shared resource and make cluster of the role.

i.e. CSR = {RSRn, η}
Where,
CSR is the cluster by apply the third criteria RSR
RSRn = {RSR1, RSR2, ……..,RSRn} is the set of role
which is using shared resource.
η : ρ(RSR) is a performance function which defines
the time/amount of access shared resource by role.
The performance function must satisfy the constraint,
that the adding shared resource role never decreases
the performance of the system.
Formally, this is defined as follows:
If RSR1, RSR2 RSRn are sets of shared resource role
such that RSR1 RSR2 , then η(RSR1) ≥ η(RSR2).

7. After applying the third criteria we find out the
intersection of cluster

i.e. CI ∩ CSR

 CR ∩ CSR

CI ∩ CSR ∩ CR

The performance function must satisfy the
constraints, that the removal role from CI , CR and
CSR and assigning it to intersection of cluster CI ∩ CSR
, CR ∩ CSR and CI ∩ CSR ∩ CR does not decreases the
performance of the system.

8. Map the individual cluster of CI, CR, and CSR to
individual capable agent which is having desired
characteristics depending upon the cluster.

At the time of mapping role cluster CI, CR, and CSR to
agent, the mapping must satisfy the role constraints.
The mapping of roles to agents should never violate
any role constraint (RT, RA, RC, RB, RST, RCC), and if
any role constraint is violated, it raises corresponding
exception.

9. Map the intersections of cluster (CI ∩ CSR, CI ∩ CR,
CR ∩ CSR and CI ∩ CSR ∩ CR) to individual capable
agent which is having desired characteristics
depending upon the cluster intersection.

10. At the time of mapping intersections of role
cluster CI ∩ CSR, CI ∩ CR, CR ∩ CSR and CI ∩ CSR ∩
CR to agent, the mapping must satisfy the role
constraints. The mapping of roles to agents should
never violate any role constraint (RT, RA, RC, RB, RST,
RCC), and if any role constraint is violated, it raises
corresponding exception.

The system performance is optimal when the
intersections of the cluster are minimal.

For better clustering and mapping roles to agent, it is
essential that system analyzer captures more specific
requirements, analyzes the requirements from users’
point of view and system point of view carefully. By
doing this the system analyzer understands the
relationship and dependency among roles and better
mapping criteria between roles to agents is achieved.

5 Conclusions and Future Work
In this paper, a novel methodology is proposed for
optimized agent based systems performance. The
clustering of role and mapping role to agent is highly
application dependent. So clustering and mapping
roles to agent are essential phases to optimize system
performance. Optimal cluster size is obtained by
user-defined performance parameter (η). It is found

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 220

that that the system performance is optimal when the
intersections of the cluster are minimal.

We are currently working to refine the proposed
methodology via implementation of real life case
study.

References:
[1] Chiung Hui, Leon Lee and Alan Liu, “A

Method for Agent-Based System Requirements
Analysis”, Proceedings of the IEEE Fourth
International Symposium on Multimedia
Software Engineering (MSE’02), 2002.

[2] C. W. Chen, “An analysis method for
cooperation issues in multi-agent systems”,
Master’s thesis, National Chung Cheng
University, 2000.

[3] Giunchiglia, J. Mylopoulos and A. Perini,
“The Tropos Software Development
Methodology: Processes”, Models and
Diagrams. Technical Report No. 0111-20, ITC
- IRST, Nov 2001.

[4] L. Padgham and M. Winikoff, “Prometheus: A
Methodology for Developing Intelligent
Agents”, Proceedings of the Third International
Workshop on Agent Oriented Software
Engineering, at AAMAS 2002. Bologna, Italy,
July 2002.

[5] M. Wooldridge, N. Jennings and D. Kinny,
“The Gaia Methodology for Agent-Oriented
Analysis and Design”, Journal of Autonomous
Agents and Multi-Agent Systems 3 (3), p285-
312, 2000.

[6] P. Ranjan and A. K. Misra, “An Enhanced
Model For Agent Based Requirement
Gathering and Pre-System Analysis”,
Proceedings of 13th Annual IEEE International
Symposium and Workshop on the Engineering
of Computer Based Systems (ECBS) 2006,
p187-195, Potsdam, Germany, March 27th-
30th, 2006.

[7] P. Ranjan and A. K. Misra, “A Hybrid Model
for Agent Based System Requirements
Analysis”, ACM SIGSOFT Software
Engineering Notes, Volume 31, No. 3, May
2006.

[8] R. Depke, R. Heckel and J.M. Kuster,
“Improving the Agent_Oriented Modeling
Process by Roles”, ACM AGENTS’01, May
28-June1, 2001, Canada.

[9] R. Depke, R. Heckel and J.M. Kuster, “ Roles
in Agent_Oriented Modeling”, International
Journal of Software Engineering and
Knowledge Engineering, Volume 11, No. 3,

2001.
[10] T. Juan, A. Pearce and L. Sterling,

"ROADMAP: Extending the Gaia
Methodology for Complex Open Systems",
Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), p3-10, Bologna,
Italy, July 2002.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 221

