
Ant Colony Based Optimization Technique for Voltage  

Stability Control 
 

MOHD ROZELY KALIL 
1
, ISMAIL MUSIRIN 

2
, MUHAMMAD MURTADHA OTHMAN 

Faculty of Electrical Engineering 

Universiti Teknologi MARA 

40450 Shah Alam, Selangor 

MALAYSIA 

  
Abstract: - This paper presents Ant Colony Optimization (ACO) technique for optimal reactive power dispatch 

(ORPD) in order to improve voltage stability condition along with transmission loss and voltage profile 

monitoring. ACO is a new cooperative agent’s approach, which is inspired by the observation of the behaviours 

of real ant colonies on the topics of ant trial formation and foraging method. The set of cooperating agents 

called “ant” cooperate to find the optimal point of reactive power dispatch. Comparative studies presented with 

respect to Evolutionary Programming (EP) and Artificial Immune System (AIS) had indicated the merit of the 

proposed technique. Tests were conducted on the IEEE Reliability Test System producing promising results as 

compared to EP and AIS. The capability of developed ACO in solving continuous optimization problems rather 

that only limited to graphical optimization problems has been revealed as the added value in the algorithm. 

 
Key-Words: - Optimal Reactive Power Dispatch, Ant Colony Optimization, Evolutionary Programming, 
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1 Introduction 
The voltage instability has been found to be responsible 

for several major network collapses in many countries. 

This situation is normally due to the stressed condition 

as a result of the increase in reactive power load. The 

control strategies aim to avoid some of the symptoms 

that lead to voltage collapse such as heavily loaded 

situation, weakened by transmission outages, or 

subjected to reactive power shortages. It is associated to 

reactive power deficiencies, and it may result in 

uncontrollable system-wide voltage collapse, loss of 

loads and blackout [1]. 

The operating system loads need a significant amount 

of reactive power that has to be supplied and to 

maintain load bus voltages within their acceptable 

operating limits. Scheduling of reactive power in an 

optimum manner reduces circulating reactive power 

promoting better voltage profile which leads to 

appreciable real power saving on account of reduced 

system losses [2]. Past studies have reported several 

techniques for reducing voltage collapse occurrences. 

Among the possible techniques are optimal reactive 

power planning, installation of FACTS devices, 

capacitor placement, transformer tap setting and 

management of reactive power reserve. 

The purpose of an optimal reactive power dispatch 

(ORPD) is mainly to improve the voltage profile in the 

power system and to minimize transmission losses. This 

can be achieved by using a number of control tools such 

as switching VAR sources, changing generator voltages 

and adjusting transformer settings [3]. The 

problem of reactive power dispatch was considered 

as a special case of optimal power flow (OPF) in 

which the control variables are those that present 

close relationship with reactive power flow. An 

alternative approach for the determination of 

ORPD is based on the used of optimization 

techniques. Several optimization techniques have 

been applied to the reactive power dispatch 

problem such as artificial neural network [3], 

genetic algorithm [4-5], evolutionary programming 

[6], artificial immune system [7] and particle 

swarm optimization [2].  

ACO is multi-agent system in which the behaviour 

of each single agent, called artificial ant or ant is 

inspired by the behaviour of real ants [8]. ACO has 

been successfully employed to combinatorial 

optimization problems in power system such as 

unit commitment [9], optimal placement of 

capacitors in distribution systems [10], economic 

generator scheduling and load dispatch [11] and 

multi-state electrical power systems problems [12]. 

The feature of technique presentation is different 

from other method since it can be implemented 

easily; flexible for many different problem 

formulations and finally its capability in avoiding 

the occurrences of local optima for a given 

problem [13].  

This paper presents ACO based optimization 

technique for voltage stability improvement in a 

power transmission system. Along with this, 
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voltage profile, loss reduction, computation time and 

iteration numbers are the added criteria monitored in 

this study. Validation on the IEEE 30-bus Reliability 

Test System (RTS) indicated that ACO has 

outperformed the EP and AIS in all criteria, while its 

capability in solving continuous optimization problems 

rather than only graphical mode in nature has been 

revealed as added value in this study. 

 

2 Ant Colony Optimization (ACO) 
ACO algorithm is inspired by the behaviour of real 

ant colonies used to solve combinatorial optimization 

problem. The real ants lay down in some quantity an 

aromatic substance, known as pheromone, in their way 

to food source. The pheromone quantity depends on the 

length of the path and the quality of the discovered food 

source [14]. An ant chooses an exact path in connection 

with the intensity of the pheromone. The pheromone 

trail evaporates over time if no more pheromone is laid 

down. Other ants are attracted to follow the pheromone 

trail. Therefore, the path will be marked again and it 

will attract more ants to use the same path. The 

pheromone trail on paths leading to rich food sources 

closet to the nest will be more frequented and will 

therefore grow faster. In this way, the best solution has 

more intensive pheromone and higher probability to be 

chosen [14]. The described behaviour of real ant 

colonies can be used to solve combinatorial 

optimization problems in which artificial ants search 

the solution space by transiting from nodes to nodes. 

The artificial ants movement usually associated with 

their previous action that stored in the memory with a 

specific data structure [13]. The pheromone 

consistencies of all paths are updated only after the ant 

finished its tour from the first node to the last node. 

Every artificial ant has a constant amount of pheromone 

stored in it when the ant proceeds from the first node. 

The pheromone that has been stored will be evenly 

distributed on the path after artificial ants finished its 

tour. The amount of pheromone will be high if artificial 

ants finished its tour with a good path and vice versa. 

The pheromone of the routes progressively decreases 

by evaporation in order to avoid artificial ants stuck in 

local optima solution [13]. 

ACO algorithm has been used to solve combinatorial 

optimization problem involving initialization, state 

transition rule, fitness evaluation, local updating rule 

and global updating rule.  

3 Optimal Reactive Power Dispatch 

Conventionally, the purpose of optimal reactive 

power dispatch (ORPD) is to improve voltage 

stability condition and to minimize loss, which can 

be implemented separately. In this study, voltage 

stability improvement has been chosen as the 

objective function which utilized a voltage 

stability index as the fitness in the problem 

formulation. 

 

3.1 Problem Formulation 
Stress load condition will lead to voltage decay 

along with increase of transmission loss. This 

phenomenon can be alleviated by performing 

reactive power planning which involves 

optimization problems. In this study, the optimal 

reactive power dispatch was chosen as the reactive 

power planning technique in the attempt of 

alleviating voltage stability condition. A line-based 

voltage stability index termed as Fast Voltage 

Stability Index (FVSI) developed by I. Musirin and 

T. K. A. Rahman [15] based on the quadratic 

equation of voltage at the receiving end of a 2 bus 

system was adopted as the fitness function. 

Numerous line indices were computed at all lines 

in the system considering a particular loading 

condition. The mathematical equation for FVSI -

15] is given as follows:- 

iji
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where:   

Zij = line impedance 

Xij = line reactance 

Vi = voltage at the sending end 

Qj = reactive power at the receiving end 

 

FVSI ranges from 0 at no load to 1.0 at stress 

condition which already experiencing instability 

condition. 

 

3.2 Algorithm for ORPD using ACO 
 The general algorithm ACO has been 

described in Fig. 1, while this section translates the 

ACO operators for the implementation of ORPD. 

The process involves initialization, state transition 

rule, local updating rule, fitness evaluation and 

global updating rule. 

Step 1: Initialization; during the initialization 

process n, m, tmax, dmax, β, ρ, α and q0 are specified. 

 

where: 

n : no. of nodes 

m : no. of ants 

tmax : maximum iteration 

dmax : maximum distance for every ants 

tour 

β : parameter, which determines the 

relative  importance of pheromone 
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versus distance (β > 0) 

ρ :  heuristically defined coefficient  

   (0 < ρ < 1) 

α : pheromone decay parameter 

  (0 < α < 1) 

q0  : parameter  of the algorithm  

  (0 < q0 < 1) 

τo : initial pheromone level 

 

Every parameter requires to be set for limiting the 

search range in order to avoid large computation time.  

 

dmax can be calculated using the following formula: 
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where:  

 r     current node 

 u     unvisited node 

 

Step 2: Generate first node randomly; the first node will 

be selected by generating a random number according 

to a uniform distribution, ranging from 1 to n.  

 

Step 3: Apply state transition rule; in this step the ant 

located at node r (current node) will choose the nodes s 

(next node) based on the following rule. 
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 where: 

q =   random number uniformly distributed in [0…1] 

S = random variable selected according to the 

probability distribution given in eq. (5) 

 

The probability for an ant k at node r to choose the next 

node s, is calculated using the following equation.  
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τ    :    pheromone 

Jk(r): set of nodes that remain to be visited by ant k 

positioned on node (to make the solution feasible) 

η    :   1/δ, is the inverse of the distance δ(r,s). 

 

Step 4: Apply local updating rule; while constructing a 

solution of reactive power dispatch search, ants visit 

edges and change their pheromone level by applying 

the local updating rule of eq. (6).  

τ(r,s) ‹— (1 – ρ) τ(r,s)+ ρ.∆ τ(r,s)             (6) 

 

where: ∆ τ(r,s) = τo 

 

Step 5: Fitness evaluation; it is performed after all 

ants have completed their tours. In this step, the 

control variable is computed using the following 

equation:- 

                            max

max

x
d

d
x ×=                       (7) 

where: 

d : distance for every ants tour 

xmax : maximum x 

 

The values of x will be assigned for the reactive 

power at the generator buses. The fitness is 

computed by performing ac load flow program. 

This program is called repeatedly into the ACO 

main program for the whole process.  

No

No

Yes 

Yes 

 
 

Fig. 1: Flow chart for Ant Colony Optimization  
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Step 6: Apply global updating rule; to simplify the 

problem, this step is applied to edges belonging to the 

best ant tour which give the best fitness among all ants. 

The pheromone level is updated by applying the global 

updating rule in eq. (8). 

            τ(r,s) ‹— (1– α) τ(r,s)+ α.∆ τ(r,s)         (8) 

 

where: 




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α is the pheromone decay parameter (0 < α < 1) 

Lgb is the length of the globally best tour from the 

beginning of the trial. 

Step 7: End condition; the algorithms stop the iteration 

when a maximum number of iterations have been 

performed otherwise, repeat step 2. Every tour that was 

visited by ants should be evaluated. If a better path is 

discovered in the process, it will be kept for next 

reference. The best path selected between all iterations 

engages the optimal scheduling solution to the reactive 

power dispatch problem. The overall steps of the ACO 

algorithm can be represented in the flow chart of Fig. 1. 

 

4 Results and discussion 
 The Ant Colony Optimization (ACO) engine was 

written in MATLAB used to perform optimal reactive 

power dispatch. IEEE 30-bus system was used as the 

test specimen, which has 6 generator buses and 25 load 

buses with 41 interconnected lines. The results of this 

study were consequently compared with other 

techniques such as EP and AIS. The comparison is 

made in terms of voltage stability improvement, total 

loss reduction, voltage profile and computation time.  

 

4.1 Results of ORPD Performed Using Ant 

Colony Optimization 
Table 1 tabulates the results for ORPD 

performed to the system considering voltage 

stability improvement as the objective function. In 

this study bus 29 was taken as the test bus 

considering several loading conditions. The impact 

of ORPD via ACO was investigated in terms of 

voltage profile, transmission loss and voltage 

stability improvement which was indicated by 

reduction in FVSI value. 

 From the table, the values of FVSI at 

maximum loading (Qd29 = 38 MVAr) at bus 29 

identified by ACO technique is reduced from 

0.9942 to 0.6716. It also reduced the total loss in 

the system from 32.74 MW to 10.28 MW and at 

the same time voltage profile is improved from 

0.5313 p.u. to 0.7775 p.u.. The amount of reactive 

power that should be injected to generators 2, 5, 8, 

11 and 13 are 14.10 MVAr, 20.51 MVAr, 44.62 

MVAr, 9.23 MVAr and 16.62 MVAr as indicated 

in Table 1. The result for other loading conditions 

can be observed in the same table. Apparently at 

all loading conditions ACO has successfully 

improved the voltage stability condition indicated 

by reduction of FVSI values in post-RPD.  

 

4.2 Results of ORPD Performed Using 

Evolutionary Programming 
 Table 2 tabulates the results for ORPD 

performed on the similar bus using Evolutionary 

EP. From the table it is observed that at Qd29 = 38 

MVAr, FVSI value is reduced from 0.9942 to 

0.7428. At the same time voltage profile is 

improved from 0.5313 p.u. to 0.7170 p.u., while 

Table 1: Results for ORPD using ACO when bus 29 

Loading 

Conditions 

(MVAr) 

 

Analysis 

 

FVSI 

Total 

loss 

(MW) 

 

Iter. 

no. 

Comp 

Time 

(sec) 

 

Qg2 

MVAr 

 

Qg5 

MVAr 

 

Qg8 

MVAr 

 

Qg11 

MVAr 

 

Qg13 

MVAr 

 

Vm 

(p.u.) 

pre-RPD 0.2111 18.12        0.9436 
Qd29 = 10 

post-RPD 0.1636 4.81 3 11.51 14.10 19.49 26.15 6.15 5.54 1.0318 

pre-RPD 0.7613 25.56        0.6733 
Qd29 = 35 

post-RPD 0.5899 9.03 3 9.03 19.23 21.54 38.46 10.46 15.38 0.8214 

pre-RPD 0.9942 32.78        0.5313 
Qd29 = 38 

post-RPD 0.6716 10.28 3 10.10 14.10 20.51 44.62 9.23 16.62 0.7775 

 

Table 2: Results for ORPD using EP with  bus 29 loaded  

Loading 

Conditions 

(MVAr) 

 

Analysis 

 

FVSI 

Total 

loss 

(MW) 

 

Iter. 

no. 

Comp 

Time 

(sec) 

 

Qg2 

MVAr 

 

Qg5 

MVAr 

 

Qg8 

MVAr 

 

Qg11 

MVAr 

 

Qg13 

MVAr 

 

Vm 

(p.u.) 

pre-RPD 0.2111 18.12        0.9436 
Qd29 = 10 

post-RPD 0.1598 4.79 5 22.01 29.84 37.27 50.90 13.11 3.11 1.0321 

pre-RPD 0.7613 25.56        0.6733 
Qd29 = 35 

post-RPD 0.6343 9.34 5 26.14 34.26 27.49 56.14 9.82 12.94 0.7790 

pre-RPD 0.9942 32.78        0.5313 
Qd29 = 38 

post-RPD 0.7428 11.31 5 87.41 34.26 27.49 56.14 9.82 12.94 0.7170 
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the loss has been reduced from 32.78 MW to 11.31 

MW.  The amount of reactive power that should be 

injected to generators 2, 5, 8, 11 and 13 are 34.26 

MVAr, 27.49 MVAr, 56.14 MVAr, 9.82 MVAr and 

12.94 MVAr as indicated in Table 2. The results for 

other loading condition are indicated in the same table. 

 

4.3 Results of ORPD Performed Using Artificial 

Immune System 

 Table 3 tabulates the results for ORPD performed 

using Artificial Immune System (AIS). From the table 

it is observed that at Qd29 = 38 MVAr, FVSI value is 

reduced from 0.9942 to 0.7433. At the same time 

voltage profile is improved from 0.5313 p.u. to 0.7165 

p.u., while the loss has been reduced from 32.78 MW to 

11.32 MW.  The amount of reactive power that should 

be injected to generators 2, 5, 8, 11 and 13 are 34.18 

MVAr, 27.45 MVAr, 56.08 MVAr, 9.79 MVAr and 

12.91 MVAr as indicated in Table 3. The results for 

other loading condition are indicated in the same table. 

 

4.4 Comparative Studies of ORPD Using ACO, EP 

and AIS 
Results from Tables 1, 2 and 3 for Qd29 = 38 MVAr 

are extracted and retabulated in Table 4. From Table 4, 

it is observed that ACO outperformed EP and AIS in all 

criteria in terms of voltage stability improvement, loss 

minimization, voltage profile improvement and fast 

computation time. This reveals the superiority of ACO 

with respect to others.  

The profiles for FVSI, bus voltage and loss in voltage 

stability improvement using ACO, EP and AIS are 

shown in Figure 2, 3 and 4. In Fig. 2, it is observed that 

ACO is better than EP and AIS since the FVSI profile is 

lower indicating better voltage stability improvement. 

On the other hand, in Fig. 3 the bus voltage is higher 

with the implementation of ACO as compared to 

EP and AIS. This reveals the strength of ACO in 

improving voltage profile. Fig. 4 illustrates the loss 

profile with ORPD implemented using ACO, EP 

and AIS. From the figure, ACO managed to reduce 

the largest transmission loss as compared to EP 

and AIS. This has revealed the merit of ACO as 

compared to EP and AIS optimization techniques. 

 

 

 
 

5 Conclusion 
Application of ACO in ORPD for voltage 

stability control was presented. Results from the 

study indicated that optimal reactive power 

dispatch using ACO has outperformed EP and AIS 

in terms of voltage profile, loss reduction, 
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Fig. 3: Voltage profiles monitored with load varies at bus 

29 
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Fig. 2: FVSI profiles computed with load varies at bus 29 

Table 4: Results of Comparative Studies for ORPD 

post-RPD 
Criteria 

pre-

RPD ACO EP AIS 

FVSI 0.9942 0.6716 0.7428 0.7433 

Total loss (MW) 32.78 10.28 11.31 11.32 

Voltage (p.u.) 0.5313 0.7775 0.7170 0.7165 

Comp. Time 

(sec) 

 
10.10 87.41 525.02 

 

 
Table 3: Results for ORPD using AIS with  bus 29 loaded 

Loading 

Conditions 

(MVAr) 

 

Analysis 

 

FVSI 

Total 

loss 

(MW) 

 

Iter. 

no. 

Comp 

Time 

(sec) 

 

Qg2 

MVAr 

 

Qg5 

MVAr 

 

Qg8 

MVAr 

 

Qg11 

MVAr 

 

Qg13 

MVAr 

 

Vm 

(p.u.) 

pre-RPD 0.2111 18.12        0.9436 
Qd29 = 10 

post-RPD 0.1587 4.67 3 321.29 25.56 28.61 26.22 7.98     5.35 0.9917 

pre-RPD 0.7613 25.56        0.6733 
Qd29 = 35 

post-RPD 0.6346 9.35 3 503.26 34.18 27.45 56.08 9.79 12.91 0.7787 

pre-RPD 0.9942 32.78        0.5313 
Qd29 = 38 

post-RPD 0.7433 11.32 3 525.02 34.18 27.45 56.08 9.79 12.91 0.7165 
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computation time and voltage stability improvement. 

The merit of ACO over EP and AIS can be highlighted 

in terms of its accuracy and least computation time. The 

original philosophy of using ACO in solving the 

discrete or graphical optimization problems has been 

enhanced into solving continuous problem as 

highlighted in this study. This study has also discovered 

that ACO technique is useful for solving more complex 

power system optimization problems. 
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Fig. 4: Total loss profiles monitored with load varies at bus 

29 
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