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Abstract: This paper presents the use of artificial intelligence and more specifically artificial neural 
networks, genetic algorithms and evolutionary algorithms in the solution of the time series prediction 
problem. The time series prediction problem is formulated as a system identification problem, where the 
input to the system is the past values of a time series and its desired output is the future values of a time 
series. A method has been developed based on the well known from the literature Genetics-Based Self-
Organising Network (GBSON) method and has been applied to various time series data producing 
satisfactory results. 
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1. Introduction 

A time series is a set of observations xt, each 
one being recorded at a specific time t. A discrete 
time series is one where the set of times at which 
observations are made is a discrete set. Continuous 
time series are obtained by recording observations 
continuously over some time interval. An example 
of a discrete time series can be seen in Figure 1. 

Analysing time series data led to the 
decomposition of time series into components. 
Each component is defined to be a major factor or 
force that can affect any time series. Three major 
components of time series have been identified. 
Trend refers to the long-term tendency of a time 
series to rise or fall. Seasonality refers to the 
periodic behaviour of a time series within a 
specified period of time. The fluctuation in a time 
series after the trend and seasonal components 
have been removed is termed as the irregular 
component [1]. 

In this work artificial intelligence is used in 
order to give solution to the time series prediction 
problem. The time series prediction problem is 
formulated as a system identification problem, 
where the input to the system is the past values of a 
time series, and its desired output is the future 
values of a time series. A method has been 
developed based on the well known from the 
literature Genetics-Based Self-Organising Network 
(GBSON) method and has been applied to 

thunderstorm days time series data that have been 
collected from the National Meteorological 
Authority of Hellas producing satisfactory results. 

 
Figure 1: Monthly thunderstorm days, 01/1980-
12/2005. 
 
 
2. The Procedure of Time Series 

Signals Prediction 
The prediction of time series signals is based 

on their past values. Therefore, it is necessary to 
obtain a data record. When obtaining a data record, 
the objective is to have data that are maximally 
informative and an adequate number of records for 
prediction purposes. Hence, future values of a time 
series x(t) can be predicted as a function of past 
values x(t-1), x(t-2), …, x(t-φ). 
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x(t+τ) = f(x(t-1), x(t-2), …, x(t-φ))  (1) 
The problem of time series prediction now 

becomes a problem of system identification. The 
unknown system to be identified is the function 

 with inputs the past values of the time series. ( )⋅f
While observing a system there is a need for a 

concept that defines how its variables relate to each 
other. The relationship between observations of a 
system or the knowledge of its properties is termed 
as the model of the system. Models can be given in 
several different forms. A mental model does not 
involve any mathematical formalisation, but the 
system's behaviour is summarised in a 
nonanalytical form in a person's mind. A mental 
model is a driver's perception of a car's dynamics. 
Graphic models make use of a graph or a table to 
summarise the properties of a system. 
Mathematical models are mathematic relationships 
among the system variables, often differential or 
difference equations. In system identification, a set 
of candidate models is specified, where the search 
for the most suitable one will be restricted. 

The search for the most suitable model for a 
system is guided by an assessment criterion of the 
goodness of a model. In the prediction of time 
series, the assessment of the goodness of a model 
is based upon the prediction error of the specific 
model [2, 3]. 

After the most suitable model of a system has 
been determined, it has to be validated. The 
validation step in the system identification 
procedure is very important because in the model 
identification step, the most suitable model 
obtained was chosen among the predefined 
candidate models set. This step will certify that the 
model obtained describes the true system. Usually, 
a different set of data than the one used during the 
identification of the model, the validation set, is 
used during this step [4, 5]. 
 In this paper a developed by the authors’ 
method has been applied to various time series data 
producing very satisfactory results. 
 
 
3. Genetics-Based Self-Organising  

Network (GBSON) 
In [6], Kargupta and Smith proposed a 

method for system identification using evolving 
polynomial networks. This approach was 
motivated from the work of Ivakhnenko who 
introduced the Group Method of Data Handling 
(GMDH). 

The method introduced by Kargupta and 
Smith is the Genetics-Based Self-Organising 

Network (GBSON). It is a hybrid method of the 
GMDH and Genetic Algorithms [7]. The GBSON 
method was introduced to overcome the drawbacks 
of the original GMDH algorithms, since they use 
local search techniques to obtain an optimal 
solution [8, 9]. 

The GBSON uses polynomial neural 
networks to represent the model of the system to 
be identified. Each layer of the polynomial neural 
network is regarded as a separate optimisation 
problem. The input to the first layer of the network 
is the independent variables of the data sample. 
The output of each layer is the peak nodes obtained 
by the use of a multi-modal Genetic Algorithm 
[10]. The peak nodes selected to be the output of a 
layer are also the inputs for the next layer. 

The population members of the GA are 
network nodes represented by an eightfield bit 
string. The two first fields are used to represent the 
nodes from the previous layer connected to the 
present node. The other six fields are used to 
represent the coefficients of a quadratic function 
that determines the output of the node y: 
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where z1 and z2 are the outputs of the connected 
nodes in the previous layer. 

The fitness measure of a node is given by 
calculating its description length. The description 
length gives a trade off between the accuracy of 
the prediction and the complexity of the network. 
The equation used by Kargupta and Smith for 
calculating the description length is: 

nmDnI n log5.0log5.0 2 +=   (3) 

where is the mean-square error, m is the 
number of coefficients in the model selected and n 
is the number of observations used to determine 
the mean-square error. 
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The multi-modal GA used in GBSON 
incorporates the fitness-sharing scheme, where the 
shared fitness is given by: 
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fi is the original fitness of the node and mi is the 
niche count defined by: 
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N is the population size and dij is the Hamming 
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distance between the members of the population i 
and j. The niche radius σs is determined by the 
equation: 
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 (7) 
where l is the string length and q is the number of 
nodes in the previous network layer. 

New populations are obtained after applying 
the genetic operators of tournament selection, 
single-point crossover and point mutation. A 
mating restriction is also applied to the members to 
be crossed. If a member i is to be crossed, its mate 
j is selected such that dij < σs. If no such mate can 
be found then j is selected randomly. 

The GBSON procedure continues until the 
GA converges to a layer with a single node. 
 
 
3. Simulation Results 
3.1 Thunderstorm Days Series  

The first set of experiments was conducted on 
monthly thunderstorm days numbers, recorded by 
the National Meteorological Authority of Hellas 
[11], from January 1980 to December 2005. These 
numbers are indicative of the average relative 
number of thunderstorm days observed every 
month of the year. The thunderstorm days are 
strongly related to the lightning. In result, the 
thunderstorm days can determine the lightning 
level of an area, i.e. the number of lightning flashes 
to earth. The prediction of the thunderstorm days is 
therefore essential to the studies of transmission 
and distribution lines’ designers, since the 
knowledge of the future lightning level of an area 
can result in a better design and consequently to 
the reduction of the lightning faults in lines. 

The thunderstorm days time series has been 
classified as quasiperiodic, and it has been found 
that the period varies between 8 to 12 years with 
irregular amplitudes, making the time series hard 
to predict. 

The objective of the experiment is to generate 
a single-step prediction based on past observations. 
The data were normalised to take values from zero 
to one, before using them as input data to the 
polynomial neural networks. The input pattern was 
assigned as (x(t-1), x(t-2), x(t-3)) and the desired 
output was: 

))3(),2(),1((()( −−−= txtxtxftx  
From the 312 available data points, 52 points 

(208 to 260) were used for the validation of 
potential models. The experiments were run with a 

population size of 20 for 100 generations, with 
tournament size 4, probability of crossover 0.95 
and probability of mutation 0.01. 

GBSON resulted to a network with three 
layers to model the thunderstorm days series. The 
most significant term in the partial descriptions, 

22
jijiji fxexxdxcxbxay +++++=  (8) 

of the model was the term xj and the less 
significant term was the constant term. 

The past values of the thunderstorm days 
series, (x(t-1), x(t-2), x(t-3)), contributed equally to 
obtain the final model. 

The results of the prediction can be seen in 
Figure 2. The actual error of the prediction is 
shown in Figure 3. The percent square error (PSE) 
over the whole data set is 0.043825 and the root 
mean square error (RMSE) is 0.007243. The PSE 
over the validation data set is 0.067253. The 
difference of the PSE over the whole data set and 
the validation data set is small, and thus the model 
obtained performs with approximately the same 
accuracy in data points that have not been used in 
any part of the modelling process. 

 
Figure 2: The actual thunderstorm days series and 
the predicted with the proposed method. 
 

3.2 Lorentz Attractor Series  
Edward Lorentz obtained the Lorentz 

attractor system, in his attempt to model how an air 
current rises and falls while it is heated by the sun. 
The Lorentz attractor system is defined by the 
following three ordinary differential equations. 

)()()( tytx
dt

tdx σσ −=  

)()()()()( tytxtxrty
dt

tdy
−+−=  

 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         32



)()()()( tytxtbz
dt

tdz
+−=  

The Lorentz attractor system has also been 
used to model a far-infrared NH3 laser that 
generates chaotic intensity fluctuations [12]. The 
far-infrared NH3 laser is described by exactly the 
same equations, only the variables and constants 
have different physical meaning. 

 
Figure 3: The actual error for each point of the 
thunderstorm days series predicted with the 
proposed method. 
 

The time series used in this experiment, is the 
x-component in the Lorentz equations. The data 
were generated by solving the system of 
differential equations, that describe the Lorenz 
attractor, with the initial conditions of σ = 10, r = 
50 and b = 8/3. The data were again normalised to 
take values from zero to one, before they were 
used as inputs to the polynomial neural networks 
[13-16]. 

The objective is to make one-step ahead 
prediction. The prediction is based on four past 
values (x(t-1), x(t-2), x(t-3), x(t-4)) and thus the 
output pattern is: 

))4(),3(),2(),1((()( −−−−= txtxtxtxftx  
The experiments were performed with 100 

members in each population for 500 generations, 
with tournament size 6, probability of crossover 
0.95 and probability of mutation 0.03. The data 
points 2000 to 2500 were used for model 
validation.  

The network constructed by the GBSON 
method to model the Lorentz attractor has eight 
layers. The most significant term in the partial 
descriptions: 

22
jijiji fxexxdxcxbxay +++++=  

of the model was the term  and the less 
significant term was the constant term. The input 
variables x

2
ix

3 and x4, were the most significant 
variables in the model. The results of the 
prediction and the actual system can be seen in 
Figure 3. The actual error of the prediction for each 
data point is shown in Figure 4. The PSE over the 
whole data set is 0.000244 and the RMSE is 
0.000050. The PSE over the validation data set is 
0.000231. The difference of the PSE over the 
whole data set and the validation data set is small, 
and thus the generalisation of the network is very 
good. 
 

 
Figure 3: The predicted with the proposed method 
time series and the actual Lorenz attractor system 
time series. 
 

 
Figure 4: The actual error for each data point 
obtained from the prediction of the Lorenz 
attractor system time series. 
 
 
4. Conclusions 
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The paper has presented the use of artificial 
intelligence and more specifically artificial neural 
networks, genetic algorithms and evolutionary 
algorithms in the solution of the time series 
prediction problem. The time series prediction 
problem has been formulated as a system 
identification problem, where the input to the 
system was the past values of a time series, and its 
desired output is the future values of a time series. 
A method has been developed based on the well 
known from the literature Genetics-Based Self-
Organising Network (GBSON) method and has 
been applied to two different sets of significant 
time series data producing very satisfactory results.  
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