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Abstract: The paper studies the stability analysis and the systematic control design of fuzzy systems which 
have been successfully applied to many practical industrial applications in the recent years. Despite the 
success it has become evident that many basic issues remain to be further addressed. These issues are based 
to the fact that there are not analytical tools, there is not a fuzzy systems theory like linear systems theory for 
fuzzy control systems. In this study two different fuzzy systems are studied. These are: a discrete-time 
system and a continuous-time system. Stability analysis and control design are performed to these systems 
using an approach based on Lyapunov stability techniques and linear matrix inequalities, which can be 
solved very efficiently by means of some powerful mathematical numerical tools such as the Scilab package. 
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1. Introduction 
      It is well known that there is a rapidly growing 
interest in fuzzy control in recent years [1, 2]. 
Fuzzy control has been successfully applied to 
many practical industrial applications. Despite the 
success it has become evident that many basic 
issues remain to be further addressed. These issues 
are based to the fact that there are not analytical 
tools, there is not a fuzzy systems theory like linear 
systems theory for fuzzy control systems. 

Stability analysis and systematic control design 
are certainly among the most important issues for 
fuzzy control systems. That is the reason why 
recently, there have been significant research 
efforts in this direction. 

In this study two different fuzzy systems are 
studied. These are: a discrete-time system and a 
continuous-time system. Stability analysis and 
control design are performed to both systems using 
an approaches based on Lyapunov techniques and 
linear matrix inequalities, which can be solved 
very efficiently by means of mathematical 
numerical tools such as the Scilab package. 
 

2. Linear Matrix Inequalities (LMI) 
A wide variety of problems arising in system 

and control theory can be reduced to a few 
standard convex or quasi-convex optimisation 
problems involving linear matrix inequalities 
(LMIs) [3]. Since these optimisation problems can 
be solved numerically very efficiently using 
recently developed interior-point methods, our 
reduction constitutes a solution to the original 
problem certainly in a practical sense. In 

comparison, the more conventional approach is to 
seek an analytic or frequency-domain solution to 
the matrix inequalities. 

A linear matrix inequality has the form: 
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where x∈Rm is the variable and the symmetrix 
matrices Fi = Fi T

 ∈ Rn×n , I = 0,…, m are given. 
The inequality symbol >0 means that F(x) is 
positive-definite for all non-zero u ∈ Rn .  
 When matrices Fi are diagonal, the LMI 
F(x)>0 is just a set of linear inequalities. Nonlinear 
(convex) inequalities are converted to LMI form 
using Schur complements. The basic idea is as 

follows: The LMI:   0
R(x)
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where Q(x) = Q(x)T, R(x) = R(x)T, and S(x) depend 
affinely on x, is equivalent to: 
 R(x) > 0,   Q(x) - S(x) R(x)-1 S(x)T  > 0 
 Very often in the LMIs the variables are 
matrices, for e.g. the Lyapunov inequality; 
 ATP + PA < 0 
where A ∈ Rn×n  is given and P = PT is the variable. 
In this case, the LMI will not be written out 
explicitly in the form F(x) > 0, but instead must be 
made clear which matrices are the variables. 
 

3. Stability Analysis and Control 
Design of Fuzzy Systems  

3.1 Using simultaneous Lyapunov stability 
 

The main feature of a fuzzy model is to 
express the local dynamics of its fuzzy implication 
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(rule) by a linear system model [4]. The overall 
fuzzy model of the system is achieved by fuzzy 
“blending” of the linear system models. 

Specifically, the fuzzy system is described by 
fuzzy IF-THEN rules that locally represent linear 
input-output relations of the system. The fuzzy 
system is of the following form: 
Rule i: IF x1(k) is Mi1… and xn(k) is Min 
THEN x(k+1) = Aix(k) + Biu(k) 
where xT(k) = [x1(k), x2(k),…, xn(k)], uT(k) = 
[u1(k), u2(k),…, um(k)] and, i = 1, 2,…, r where r is 
the number of IF-THEN rules. Mij are fuzzy sets 
and x(k+1) = Aix(k) + Biu(k) is the output from the 
i-th  IF-THEN rule. Given a pair of (x(k), u(k)), the 
final output of the fuzzy system is inferred as 
follows: 

∑

∑

=

=

+
=+ r

1i
i

ii

r

1i
i

(k)w

u(k)}Bx(k)(k){Aw
1)x(k   (1) 

where 
wi(k) = ∏  

=

n

1j
jij (k))(xM

and Mij(xj(k)) is the degree of membership of  
(xj(k)) in Mij.  

The open loop system of (1) is: 
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where it is assumed that, 

∑
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r

1i
i (k)w  > 0 and wi(k) ≥ 0 , i = 1, 2,…, r 

for all k. Each linear component Ai x(k) is called a 
subsystem. 

In case of a fuzzy continuous-time model 
described by fuzzy IF-THEN rules which represent 
local linear input-output relation of a nonlinear 
system, the i-th rule of the fuzzy model is of the 
following form: 
Plant Rule i 
IF z1(t) is  Mi1 and … and zp(t) is  Mip 

THEN (t) = Ax i x(t)+Bi u(t),  i = 1, 2,…, r (3) 
Mij is the fuzzy set and r is the number of IF-THEN 
rules. 
x(t) ∈ Rn is the state vector, u(t) ∈ Rm  is the input 
vector, Ai ∈ Rn×n and Bi ∈ Rn×m. 
z1(t) ~ zp(t) are the premise variables. 

Given a pair of (x(t), u(t)), the final output of 
the fuzzy system is inferred as: 
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where z(t) = [z1(t)  z2(t) … zp(t)], 
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for all t. Mij (z j(t)) is the grade of membership of 
zj(t) in Mij. 

The parallel distributed compensation (PDC) 
offers a design procedure of a fuzzy controller 
from the fuzzy model. To realize the PDC, a 
controlled object should be represented by a fuzzy 
model. Each control rule is individually designed 
from the corresponding rule of a fuzzy model in 
the PDC. The designed fuzzy controller shares the 
same fuzzy sets with the fuzzy model in the 
premise parts. The PDC provides the fuzzy control 
rule structure (5) for the fuzzy model (3). 
IF  z1(t)  is  Mi1 and … and  zp(t)  is  Mip 
THEN   u(t) = Fi x(t)     i = 1, 2,…, r  (5) 

The fuzzy control rules have linear state 
feedback laws in the consequent parts. The overall 
fuzzy controller is represented by: 

x(t)(z(t))Fhu(t) i

r
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i∑
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The fuzzy controller design is to determine the 
local feedback gains Fi in the consequent parts. By 
substituting (6) into (4), we obtain: 
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where Gij  = Ai – Bi Fj  . 

 

4. Scilab Software Package 
Scilab is a user-friendly software package 

which has been developed for system control and 
signal processing applications [5]. Scilab is similar 
to Matlab in that it is made up of three distinct 
parts, namely an interpreter, libraries of functions 
and libraries of Fortran and C routines. Scilab is 
capable of handling numerical matrices and even 
more complex functions, such as the manipulation 
of rational or polynomial transfer functions. This is 
done in Scilab by manipulating lists and typed lists 
which allow a natural symbolic representation of 
complicated mathematical expressions, such as 
transfer functions, linear systems or graphs. 
Polynomials, polynomials’ matrices and transfer 
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matrices are also defined and the syntax used for 
managing constant vectors and matrices. Scilab 
provides a variety of powerful primitives for the 
analysis of nonlinear systems and nonlinear 
optimization. 

Scilab has an open programming environment 
where the creation of functions and libraries of 
functions are completely under the control of the 
user. Functions are recognized as data . For 
example, functions can be defined inside Scilab 
and be passed on as input or output arguments of 
other functions. Finally, Scilab is easily interfaced 
with Fortran or C subprograms. This allows the use 
of standardized packages and libraries in the 
interpreted environment of Scilab. 

 

5. Discrete-time fuzzy system 
3.1 Description of the system  
The system that was studied is a well-known 
system, called the Box and Jenkins’ Gas Furnace. 
Air and methane are combined to form a mixture 
of gases containing CO2. The air feed is kept 
constant, but the methane feed rate is varied in any 
desired manner. The system has a single input u(t), 
and a single output y(t). The input is the gas flow 
rate of the mixing chest which can be controlled by 
a valve. The output is the CO2 concentration in the 
output gases, and gives a measure of quality of 
combustion in the boiler itself. 

The Box and Jenkins’ Gas Furnace is 
described by a fuzzy model of two rules which has 
the following form: 
Rule 1: IF y(t-1) is A1
THEN y1(t) = 16.95+0.60 y(t-1)+0.27 y(t-2)–  
0.19 y(t-3)+0.24 u(t-1)–0.56 u(t-2)–0.65 u(t-3)     (7) 
Rule 2: IF y(t-1) is A2
THEN y2(t) = 25.78+0.32 y(t-1)+0.13 y(t-2)– 
0.063 y(t-3)−0.24 u(t-1)–0.044 u(t-2)–1.36 u(t-3) (8) 
where A1 and A2 are linear membership 
functions. 
 

5.2 Stability analysis and control design 

Fuzzy rules (7) and (8) of the Box and 
Jenkins’ Gas Furnace contain constant terms 16.95  
and 25.78 respectively. This forces us to face the 
system in two steps. In the first step we omit the 
constants and study the homogeneous part, while 
in step two, the constant control terms are added to 
achieve the desired steady-state value.  

The proposed method for checking the 
stability and designing a fuzzy controller consists 
of two main parts: 

Step 1: Consider the homogeneous part of the 
system, omitting the constant terms from the fuzzy 
rules and follow the next steps: 
Step i: Derive a total fuzzy system by connecting 
the fuzzy model of the objective system with a 
fuzzy controller by using connection theorems. 
Step ii: Determine the parameters of the fuzzy 
controller so as to guarantee the stability of the 
linear subsystems in the total fuzzy system. 
Step iii: Lastly, check the stability of the total 
fuzzy system by the procedure to find a common P 
matrix. 
Step 2: Consider the original system, in which the 
fuzzy rules contain the constant terms. Use the 
same fuzzy controller obtained in Step 1, with the 
addition of constant terms satisfying the steady-
state requirements. The above design method is 
applied to the Gas Furnace system. We try to 
stabilize the i-th subsystem by using a linear 
proportional controller Ci with a proportional gain 
ki. This proposed controller takes the following 
form: 
C1 : IF y(t -1) is A1 THEN u1(t) = k1 y(t) 
C2 : IF y(t -1) is A2 THEN u1(t) = k2 y(t) 
where A1 and A2 are as in figure 2. 
Step 1: The constant terms are omitted from the 
fuzzy rules (7) and (8). 
Step i: The connection of (Rule)i with Ci is derived 
as follows:  
S1: IF y(t -1) is (A1 and A1) THEN y1(t) =    
      (0.6+0.24 k1) y(t -1)+(0.27−0.56 k1) y(t–2)   
       −(0.19+0.65 k1) y(t –3) 
S2: IF y(t -1) is (A2 and A2) THEN y2(t) =  
     (0.32−0.14 k2) y(t -1)+(0.13−0.044 k2) y(t–2)  
     −(0.063 + 1.36 k2) y(t –3) 
S3: IF y(t -1) is (A1 and A2) THEN y3(t) =  
     (0.46−(0.24 k2 + 0.14 k1)/2) y(t -1)+ 
     (0.2−(0.56 k2+0.044 k1)/2) y(t –2)+ 
     (−0.1265−(0.65 k2+1.36 k1)/2) y(t –3) 
Step ii: The two unknown parameters (k1 and k2) 
of the fuzzy controller were determined so as to 
satisfy the following design specifications: 
(L1) the eigenvalues of the system are: 
p1,2 =0.5±0.5 i , p3 = − 0.7, 
(L2) the CO2 concentration is around 55, in other 
words the response of the system is stabilized in 
value 55. 
k1 and k2 are determined so that the eigenvalues are 
equal or approximately equal with the desired for 
the linear subsystems 1 and 2 respectively. These 
parameters are k1 = 0.2610 and k2 = 0.2740. 
However, these parameters must be checked for 
subsystems 3 to determine whether are appropriate 
or not for it. This must be done because these 
parameters were determined considering only the 
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linear subsystems 1 and 2 and not the linear 
subsystem 3. 
The eigenvalues of subsystem 3 are inside the unit 
circle and are: p1,2 =0.5359 ± 0.5529 i , p3 = − 
0.6629, which are approximately equal with these 
of specification (L1). 
Step iii: Lastly the stability of the total fuzzy 
system is checked using the procedure to find a 
common P matrix. For the linear subsystems of S1, 
S2, and S3 we obtain: 

⎥
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where k1 = 0.2610 and k2 =0.2740.  
The fuzzy control system is going to be stable 

if a common positive definite matrix P exists, such 
that: 

T
1A P A1−P<0     P AT

2A 2−P<0      P AT
3A 3−P<0 

Using Scilab package for the solution of the above 
linear matrix inequality problem (LMI), the matrix 
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=
3.8510.2841.529
0.2845.9872.081
1.5292.08111.417

P

is obtained, concluded that the system is stable. 
Figure 1 shows the response of the fuzzy system 
with k1 = 0.2610 and k2 =0.2740, and initial 
conditions y(1) = y(2) = y(3) = 1.  
Step 2: The original system (7), (8) and the fuzzy 
controller: 
C1 : IF y(t -1) is A1 THEN u1(t) = k1 y(t) + n1 
C2 : IF y(t -1) is A2 THEN u1(t) = k2 y(t) + n2 
are now considered. 

The desired closed loop system response is 
y(t) = 0.3 y(t –1)+0.2 y(t -2)−0.35 y(t –3)+46.75 
and is plotted in figure 2. It must be mentioned that 
the above response satisfies the design 
specifications since it has poles at: p1,2 = 0.5±0.5 i, 
p3 = −0.7 and settles down at the value of 55. Then 
by choosing parameters for n1 and n2, the response 
of the original fuzzy control system is plotted. The 
suitable parameters for which the two responses 
become identical are n1 = −19 and n2 = −19, figure 

3. Comparing figures 2 and 3, it is easily seen that 
the two responses are almost identical. 

 
Figure 1: The output and input responses of the 
fuzzy system. 
 

 
Figure 2: Desired closed loop system response. 
 
It must be mentioned that figure 2 and 3 are plotted 
for initial conditions: y(1) = 1, y(2) =1 and y(3) =1. 
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Figure 3: The output and input responses of the 
original fuzzy control system. 

 

6. Continuous-time fuzzy system 
3.1 Description of the system  
The system that is studied in this chapter is a 
simple nonlinear mass-spring-damper mechanical 
system [6].  

The nonlinear system can be represented 
exactly by the following fuzzy model: 
IF x(t) is  and  is , THEN 1

1F )(tx 1
2F u0.02xx +−=  

IF x(t) is  and  is , THEN 
 

1
1F )(tx 2

2F
u02.0x0.225x +−−= x

IF x(t) is  and  is , THEN 2
1F )(tx 1

2F u1.5275xx +−=  
IF x(t) is  and  is , THEN 

 

2
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x∈[-1.5   1.5], ∈[-1.5  1.5]. x
The fuzzy model can be rewritten by introducing 
matrix representation as follows: 
Rule 1: IF x(t) is  and  is , THEN 

 

1
1F (t)x 1

2F
u(t),Bx(t)A(t)x 11 +=

Rule 2: IF x(t) is  and  is , THEN 
 

1
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Rule 3: IF x(t) is  and  is , THEN 
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Rule 4: IF x(t) is  and  is , THEN 
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6.2 Stability analysis and control design 

By applying relaxed conditions, decay rate, and 
constraints to the system described in the previous 
section, stability analysis is performed. The 
stability of the system is checked, using Lyapunov 
ideas. The existence of a common positive definite 
matrix P for all four subsystems (rules) is sufficient 
to guarantee stability. 
Derived conditions satisfying decay rate, were 
applied to the system. Conditions for constraints on 
control input ( μu(t)

2
≤ ) were also applied. Having 

expressed all of them as LMIs as shown below, a 
solution was tried to be found. 
maximize    α    subject to     X > 0, Y ≥ 0 
−X −AT

iA i X+ +BT
iM T

iB i Mi–(s−1) Y−2 α X>0, 
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i
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j

T
i BM j Mi−4 α X>0, i<j 

0,
Xx(0)

x(0)1
≥⎥

⎦

⎤
⎢
⎣

⎡          .0
IμM

MX
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T
i ≥⎥
⎦

⎤
⎢
⎣
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where α is the decay rate, μ = 2.5, i = 1, 2, 3, 4, j = 
1, 2, 3, 4, s = 4, x(0) is known initial conditions, X 
= P-1, Mi = Fi X and Y = X Q X. 

The Scilab package was used for the solution 
of the above LMI problem. A common positive 
definite matrix X, a common positive semidefinite 
matrix Y, matrices Mi for i = 1, 2, 3, 4 and α were 
calculated. These results are shown below: 

⎥
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−
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1.55.64
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[ ] [ ]
[ ] [ 3.8-2.52M,4.14-3.79M

5.850.26M,5.511.53M

43

21

== ]
== , α = 29445778. 

From the above solutions, the feedback gains Fi 
and a common P matrix can be obtained as P=X-1, 
Fi = Mi X-1. 

So , ⎥
⎦

⎤
⎢
⎣

⎡
=

0.16660.0443
0.04430.1891

P

[ ] [ ,, 0.9860.309F0.9860.534F 21 == ]  
[ ] [ .0.521-0.309F,0.521-0.534F 43 = ]=  
The above system is stable, since a common P 

matrix was obtained. However, this statement 
holds only for the initial conditions that applied to 
the system and for input constraint μ=2.5. For 
input constraint μ<2.5, the common matrix P does 
not exist, and the system becomes unstable. Figure 
4 shows the state trajectories for t = 2 sec and for 
eight different initial conditions. 

A different design procedure is now 
presented. By selecting the closed-loop 
eigenvalues of the system to be [-2, -2], the four 
consequent feedback gains of the fuzzy controller 
are obtained: 
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Figure 4: State trajectories of the system for t=2sec 
and several initial conditions. 
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Again derived conditions, as well as, input 
constraints converted in LMIs, are applied. 
maximize    α    subject to    X > 0, Y ≥ 0 
−X −AT

iA i X+( )XFi
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where α is the decay rate, μ = 12, i = 1, 2, 3, 4, j = 
1, 2, 3, 4, s = 4, x(0) is known initial conditions, X 
= P-1 and Y = X Q X. 
Using Scilab package for the solution of the above 
LMI problem the following results were obtained: 

⎥
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−

−
=

2.443.822
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α = 5.337D+08, and since P = X-1, 

⎥
⎦

⎤
⎢
⎣

⎡
=

0.14750.0687
0.06870.1595

P .  

The system is stable since a common matrix P 
exists. This holds for input constraint μ<12 only. 
Figure 5 shows the state trajectories for t = 2 sec 
and for eight different initial conditions. 

 

Figure 5: State trajectories of the system for t=2sec 
and several initial conditions. 

7. Conclusions 
There is a rapidly growing interest in fuzzy control 
in recent years. However, basic issues such as 
stability analysis and systematic control design 
remain to be further addressed In this paper a 
method was presented based on Lyapunov ideas 
and linear matrix inequalities. The method is 
simple and straightforward. Linear feedback 
control techniques are utilised. Stability is 
guaranteed by the existence of a common positive 
definite matrix P. Moreover, the stability analysis 
and control design problems are reduced to LMI 
problems which can be solved very efficiently in 
practice by convex techniques. Furthermore, since 
the design is not based on membership function 
information, it covers a wide range of systems, 
which may possess different membership 
functions. However, this method restricts the use 
of complicated controllers since the order of the 
system increases causing difficulties in further 
analysis of it. 
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