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İstanbul Technical University
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Abstract: - Since High Dimensional Model Representation (HDMR) uses aweight function it is possible to
affect the contributions of the terms with different level of multivariance to the total norm square of HDMR.
Of course, the most convenient HDMR is the one with the dominating constancy. This may not be achieved in
all practically encountered cases. However, it is always better to try to get higher constancy in HDMR. This
work focuses on the optimization of the HDMR’s weight function to maximize the contribution of the HDMR’s
constant component to the total norm square of HDMR. To this end we parametrize the weight function factors
by using appropriate basis functions. The resulting equation of optimization is a parametric matrix eigenvalue
problem which can be easily treated by standing numerical methods.
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1 Introduction
High Dimensional Model Representation and its cer-
tain varieties brought important contributions to mul-
tivariate analysis especially for approximating a mul-
tivariate function[1–11] in last fifteen years. Plain
HDMR can be given through the following equality
for a given multivariate functionf (x1, ..., xN)

f (x1, ..., xN) = f0 +
N
∑

i1=1

fi1

(

xi1

)

+

N
∑

i1,i2=1
i1<i2

fi1,i2

(

xi1, xi2

)

+ · · · (1)

where the right hand side contains totally2N terms
for the case ofN independent variables. The right
hand side components are determined by using the
following conditions

∫ bi

ai

dxiWi(xi) fi1,...,ik

(

xi1, ..., xik

)

= 0,

i ∈ {i1, ..., ik} , 1 ≤ k ≤ N (2)

whereWi(xi) (1 ≤ i ≤ N) stand for appropriately
chosen weight functions which are normalized as fol-
low

∫ bi

ai

dxiWi(xi) = 1, 1 ≤ i ≤ N (3)

and lead us to define the following product type mul-
tivariate weight function

W (x1, ..., xN) ≡
N
∏

i=1

Wi(xi) (4)

These conditions correspond to the following orthog-
onality conditions

∫ b1

a1

dx1W1(x1) · · ·
∫ bN

aN

dxNWN(xN)

× fi1,...,ik

(

xi1, ..., xik

)

f j1,..., jl

(

x j1, ..., x jl

)

= 0,
{

xi1, ..., xik

}

,

{

x j1, ..., x jl

}

, 1 ≤ k, l ≤ N (5)

The multivariate functionf (x1, ..., xN) is assumed
to be known analytically in the above formulation of
HDMR. This is required for uniqueness in the eval-
uation of the above integrals. Beyond this, the func-
tion f (x1, ..., xN) must be square integrable under
the weight functions given above and over the hyper-
prism defined by the cartesian product of the closed
intervals [ ai, bi ] (1 ≤ i ≤ N). This means that
the function f (x1, ..., xN) must lie in an appropri-
ately defined Hilbert space to mention about the or-
thogonality. This Hilbert space is defined over the
abovementioned hyperprism with the following in-
ner product for two arbitrary square integrable mul-
tivariate functions denoted byg (x1, ..., xN) and
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h (x1, ..., xN) respectively in this space,

(g, h) ≡
∫ b1

a1

dx1...

∫ bN

aN

dxNW (x1, ..., xN)

×g (x1, ..., xN) h (x1, ..., xN) (6)

This enables us to use an induced norm defined as
follows for an arbitrary functiong (x1, ..., xN) in the
same space

‖g‖ ≡ (g, g)
1
2 (7)

Now we can write the following norm equality
by using this norm definition and the mutual orthog-
onality of the HDMR components

‖ f ‖2 = ‖ f0‖
2 +

N
∑

i1=1

∥

∥

∥ fi1

∥

∥

∥

2

+

N
∑

i1,i2=1
i1<i2

∥

∥

∥ fi1,i2

∥

∥

∥

2
+ · · · (8)

This brings the idea of defining certain parameters to
measure the contributions of the HDMR truncations
to the total norm square of HDMR into mind. We
can do this as follows

σ0 ( f ) ≡
‖ f0‖

2

‖ f ‖2

σ1 ( f ) ≡ σ0 ( f ) +
1

‖ f ‖2

N
∑

i1=1

∥

∥

∥ fi1

∥

∥

∥

2

σ2 ( f ) ≡ σ1 ( f ) +
1

‖ f ‖2

N
∑

i1,i2=1
i1<i2

∥

∥

∥ fi1,i2

∥

∥

∥

2

. ... (9)

where the function dependence of these parameters
are explicitly shown as an argument. This formula
obviously permits us to write

σ0 ( f ) ≤ σ1 ( f ) ≤ σ2 ( f ) ≤ ... ≤ σN ( f ) ≡ 1
(10)

which implies that{σ0 ( f ) , ..., σN ( f )} forms a mo-
notonously increasing sequence towards to and in-
cluding1. σ0 can achieve1 if and only if the mul-
tivariate function at the focus remains constant ev-
erywhere in the domain of HDMR. As this function
starts to deviate from its constant value,σ0 starts to
decrease from1. Hence,σ0 somehow measures the
constancy of the target function of HDMR. Hence,

we call it “Constancy Measurer”. The otherσ enti-
ties can be interpreted in similar ways and are gener-
ally called “Additivity Measurers”.

The number of the HDMR components is2N for
the case where the number of independent variables
is N. Although HDMR contains a finite number of
terms, the number of the HDMR components may
climb to very high values asN grows. This may
make impractical the utilization of the total expres-
sion of HDMR. Then not the whole expression but its
certain truncation from the first term may be sought
to be used as an approximation. Of course, the most
preferable case is the truncation containing only the
constant component of HDMR. If the function at the
target of HDMR is somehow close to a constant then
this truncation may be expected as a good approxi-
mation. Even this is not happening, the maximiza-
tion of the HDMR’s constant component can be con-
sidered as a reasonable action to increase the numeri-
cally expressing capability of the constant truncation
of HDMR.

Before the completion of this section we need to
give the explicit expression of the constant compo-
nent of HDMR. To this end we can multiply the both
sides of (1) by the weight function and integrate over
the HDMR’s domain and then take the orthogonality
conditions into consideration. This gives

f0 =
∫ b1

a1

dx1W1 (x1) · · ·
∫ bN

aN

dxNWN (xN)

× f (x1, ..., xN) (11)

which is in fact the weighted mean value of the orig-
inal function over the HDMR’s hyperprismatic re-
gion.

The last equality explicitly shows the depen-
dence of the constant component of HDMR on the
weight function factors. Hence it seems to be possi-
ble to manipulate the the weight function factors to
maximize the value of the HDMR’s constant compo-
nent, f0. This can be done by using either an explicit
variational scheme to get the functional structures of
the weight function factors or by utilizing a linear
algebraic optimization scheme with respect to cer-
tain scalar unknowns after appropriately parametriz-
ing the weight function factors. Matrix algebraic
tools will be used in this section and the existence
and uniqueness of the solutions will be discussed in
sufficient details. We will prefer the latter case in this
work.

Paper is organized as follows. The second sec-
tion presents the parametrization of the weight func-
tion. This puts all investigations into a more amen-
able form. Third section focuses on the optimization
of the weight function parameters to get maximum
constancy. The fourth section finalizes the paper by
presenting concluding remarks.
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2 Weight Function Parametrization
Consider the weight function factorWi (xi). This
function must belong to the set of functions which
are integrable over the interval[ ai, bi ] and, beyond
this, it must be nonnegative over the abovementioned
interval. To be more practical we can consider the
function Wi (xi) as the square of an arbitrary func-
tion belonging to the linear vector space of functions
which are square integrable over the interval[ ai, bi ].
If we denote the elements of an orthonormal basis set
by υ(i)

j (xi) (1 ≤ j < ∞) then we can write

Wi (xi) =

















mi
∑

j=1

α
(i)
j υ

(i)
j (xi)

















2

, 1 ≤ i ≤ N (12)

which ismi–term truncation of most general infinite
series representation (we have truncated atmi terms
for practical reasons, howevermi can be increased
as much as we want of course). (12) takes us to the
following global weight formula

W (x1, ..., xN) =
N
∏

i=1



































mi
∑

ji=1

α
(i)
ji
υ

(i)
ji

(xi)

















2 
















(13)

Let us define the following finite sets

S f ≡
{

u1 (x1, ..., xN) , ..., uNb (x1, ..., xN)
}

(14)

Sp ≡
{

a1, ..., aNb

}

(15)

where

ui (x1, ..., xN) ≡ υ j1 (x1) × · · · × υ jN (xN) ,

1 ≤ i = i ( j1, ..., jN) ≤ Nb,

Nb ≡ m1 × · · · ×mN

1 ≤ j1 ≤ m1, ..., 1 ≤ jN ≤ mN (16)

and

ai ≡ α j1 × · · · × α jN ,

1 ≤ i = i ( j1, ..., jN) ≤ Nb,

Nb ≡ m1 × · · · ×mN

1 ≤ j1 ≤ m1, ..., 1 ≤ jN ≤ mN (17)

and subscriptsf and p in set symbols and the sub-
script in Nb above imply the words “function”, “pa-
rameter” and “basis” respectively.

The recent definitions enable us to reexpress the
overall weight function as follows

W (x1, ..., xN) =

=

Nb
∑

i=1

Nb
∑

j=1

aia jui (x1, ..., xN) u j (x1, ..., xN)

(18)

Let us use the following shorthand notations: (1)
x for x1, ..., xN, (2) a single integral symbol with
lower limit V standing forN–fold multivariate in-
tegration domain, the previously mentioned hyper-
prism which is in fact the cartesian product of the
aforementioned intervals, that is,

V ≡ [ a1, b1 ] × · · · × [ aN , bN ] , (19)

(3) dV for the volume element of theN–fold multi-
variate integration. That is,

dV ≡ dx1...dxN . (20)

Now the orthonormality of theNb number of basis
functions given above can be expressed as follows in
terms of these shorthand notations
∫

V

dVu j (x) uk (x) = δ jk, 1 ≤ j, k ≤ Nb (21)

whereδ jk stands for the Kroenecker’s delta symbol
which vanishes when its two subscripts differ other-
wise becomes1. This equality and the normalization
of the integral of the gloabal weight function to1 re-
veal the following condition for theai (1 ≤ i ≤ Nb)
parameters

Nb
∑

i=1

a2
i = 1 (22)

Now we have been sufficiently equipped to proceed
for the optimization of weight parameters to get max-
imum constancy in HDMR.

3 Weight Optimization for Maximum
Constancy

We can start withf0 to construct a cost functional
for the optimization of the weight parameters to get
maximum constancy. We can reexpressf0 as follows

f0 = aT M ( f ) a (23)
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where the elements ofNb ×Nb matrixM ( f ) and the
Nb element column vectora are defined as follows

Mi j ( f ) ≡
∫

V

dVui (x) f (x) u j (x)

1 ≤ i, j ≤ Nb (24)
aT ≡ [ a1 a2 ... aN ] (25)

The last three formulae enable us to write

‖ f0‖
2 =
(

aT M ( f ) a
)2

(26)

On the other hand the above considerations lead us
to write

‖ f ‖2 = aT M
(

f 2
)

a (27)

where the elements ofNb × Nb matrix M
(

f 2
)

are
defined as follows

Mi j

(

f 2
)

≡

∫

V

dVui (x) f (x)2 u j (x) ,

1 ≤ i, j ≤ Nb (28)

Now we can define the following cost functional
for the optimization of the weight function parame-
ters

J ( f , a) ≡ ‖ f ‖2 − ‖ f0‖
2 + λ

(

‖a‖2 − 1
)

(29)

where the Frobenius norm of the matrices has been
used here andλ stands for the Lagrange parameter
to imbed the normalization condition ofa. We can
rewrite (29) more explicitly as follows

J ( f , a) ≡ aT M
(

f 2
)

a −
(

aT M ( f ) a
)2

+λ
(

aT a − 1
)

(30)

The optimization procedure requires the setting of
this cost functional’s first order partial derivatives
with respect to the elements of vectora equal to zero.
That is,

∂J ( f , a)
∂ai

= 0, 1 ≤ i ≤ Nb (31)

which produces the following parametric matrix
eigenvalue problem

2 f0M ( f ) a −M
(

f 2
)

a = λa (32)

This problem can be solved at least numerically and
the eigenvalue and eigenvectors can be evaluated as

functions of f0. If we denote the resultingf0–
dependent eigenvalues together with thef0–depend-
ent eigenvectors whose norms are1 with respect to
square (Frobenius) norm byλ1 ( f0),...,λNb ( f0) and
a1 ( f0),...,aNb ( f0) respectively then we can make the
following definitions

µi ( f0) ≡ aT
i ( f0) M ( f ) ai ( f0) , 1 ≤ i ≤ Nb (33)

which take us to the following algebraic equations

µi ( f0) = f0, 1 ≤ i ≤ Nb (34)

Some of thef0 value obtained from all of these equa-
tions will make the constancy measurerσ0 maxi-
mum. That or those values and correspondinga vec-
tors should be taken as the solution of the optimiza-
tion problem to get maximum constancy in HDMR.

4 Concluding Remarks
The main goal of this paper has been to get the math-
ematical equations for obtaining the global (mul-
tivariate) weight function to maximize the constancy
of the High Dimensional Model Representation of
an analytically given multivariate function. The ba-
sic idea to this end is to parametrize the univariate
factors of the global weight function which is as-
sumed to be product of univariate functions each of
which depends on a different independent variable.
We have chosen the way of parametrization in such
a way that each univariate factor of the weight func-
tion can be expressed as the square of certain finite
linear combinations of the basis functions (which are
infinite in number since they lie in an Hilbert space)
of the space of squarely integrable functions. This
choice brought the possibility of expressing the
global weight function as a quadratic form in terms
of the linear combination coefficients which are in
fact the optimization parameters. This enabled us to
construct a cost functional which is basically the sum
of the deviation of the norm square of the constant
component of HDMR from the norm square of the
original function and a Lagrange multiplier including
constraint term about the normalization of the opti-
mization parameters. We have obtained a parametric
matrix eigenvalue problem such that it can be solved
at least numerically without any serious problem be-
cause of the symmetry in the matrices.

This idea can be used for all continuous HDMR
problems where the function under consideration is
given analytically. The cases where the functions are
given as certain numerical values at certain specific
points of the domain of HDMR can not be treated in
this way since the Dirac’s delta function’s square is
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undefined and we need it in the construction. Hence
some other ways of parametrization should be con-
sidered there.

One can of course consider some other ways of
parametrization even in this case of contionuous
function’s HDMR. We tried to use possibly most eas-
iest way of constructing an optimization technique to
get best value of constancy.

We have not given any numerical application
here since our basic aim was just methodology with-
out any doubt on numerical instability or applicabil-
ity. What we have obtained here can be treated by the
standard methods of solving eqigenvalue problems.
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