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Abstract: - The paper presents an on-line recursive algorithm for parameter estimation of the squirrel-cage 
induction motor. The algorithm uses the continuous parametric model of the induction motor, with certain 
advantages in the estimation precision and parameters evaluation. The method is based on a technique that 
uses the Poisson moment functional theory. This technique allows an easy connection between the estimated 
parameters and the parameters of the equivalent phase circuit. The experimental results obtained through 
numerical simulation prove the effectiveness of the proposed on-line estimation algorithm. 
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1   Introduction 
The induction motor is preferred in many industrial 
applications because is robust and because its low 
price. Recently, it is used even in motion control, 
where the performances are more severe. For the 
user, it is absolutely necessary to know precisely the 
electrical, magnetical and mechanical parameters in 
order to ensure an optimal tuning of the regulators 
disregarding the control method. Usually the 
producer does not mention all the parameters in the 
data sheets. That means that a designer of an 
electrical drive control system have to 
approximately determine the unknown parameters 
with the nominal values of the motor [1] or to 
organize specific identification experiments [2]. 

Several identification methods can be used. The 
most common experiment is no load and locked 
rotor test. The precision of the estimated parameters 
is rather low and the experiment is time consuming. 
Moreover, the parameters determined this way 
characterise only the operation of the motors feed by 
the sinusoidal waveform mains. Induction motors 
feed by static converters have different operating 
conditions due to the broad spectrum of the 
command signal. Because a part of the electrical and 
magnetical parameters depend on the frequency, the 
spectrum of the signal used in identification must be 
close as possible to the one of the real one. 

It is known that the estimation techniques based 
on nonparametric models are less precise than the 
methods based on parametric models [3]. Although 
they imply sometimes more complex experimental 

devices, the latter avoid the conversion errors, which 
appear in a nonparametric-parametric change of 
representation. In digital control, where a zero-order 
hols is used, a discrete parametric model is generally 
preferred. Thus, usually the parameter estimation 
methods use the discrete models of processes, 
ensuring several facilities: both data measuring and 
processing have discrete nature, discrete models are 
simpler than the continuous ones, and it is simpler to 
use them for simulation, control, and prediction. 

The main disadvantage is that the obtained 
parameters have a synthetic character and their 
physical interpretation is not simple for models with 
the order greater than two. 

On the other hand, the identification methods 
based on continuous models offer the following 
advantages: an easier use of the model obtained by 
the supervision level in adaptive systems, the change 
of the sample rate of control system, which is 
usually different from the sampling rate used for 
identification, an easy physical interpretation and 
evaluation of process parameters (time constants, 
eigenvalues, damping coefficients), the possibility to 
embed a priori knowledge about partially known 
process in terms of poles, zeroes or physical 
quantities like mass, stiffness, resistances or 
capacities. 

In the controllers design, estimators use the 
continuous model parameters and not the discrete 
ones. Thus the improvement of the parameters 
precision in the case of high performance drives can 
be achieved with a direct estimation technique. 
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2  The Model of the Souirrel Cage 
Induction Motor 
In order to estimate the electrical and magnetic 
parameters of the induction motor it is useful to 
highlight a linear form in the parameters by using 
only measurable quantities: 

θϕ )()( tty T=  (1) 
The analysis starts with the well-known 
electromagnetic space-vector model of the induction 
motor in a general reference frame, given in (2). 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+=

+=

−++=

++=

 iLiLΨ

iLiLΨ

Ψ)ωj(ωΨ
dt
diR

ΨjωΨ
dt
diRu

rgrsgmrg

rgmsgssg

rgrgrgrgr

sggsgsgssg

0     (2) 

Power invariant transformation is applied. 
Simbols u, i, ψ denote voltage, current, and flux 
linkage, respectively, electrical angular speeds are ωr 
for rotor and ωg for general reference frame. Indices 
s and r stand for stator and rotor, and index m 
denotes parameters and variables associated with 
magnetizing flux.  

The model becomes linear if the angular speeds 
are considered constant and become constant 
parameters. Applying the Laplace transform in (2) 
and substituting )(sirg and )(s

rg
ψ , it yields: 
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The operational inductance is obtained as: 
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With this new parameter the circuit impedance will 
be: 
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The transfer function (admittance) of the stator 
circuit becomes: 
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The coefficients of the linear model (7) have the 
following physical interpretation: 
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For the particular case, when 0=gω (stator 
reference frame), the complex coefficients of the 
vector-space differential equation are: 
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With the new parameters, the differential 
equation system becomes: 
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and taking into account that ri bb 10 = , this system can 
be arranged in the matrix form: 

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

+

dt
di

dt

id
dt

di

dt
id

sd
r

sq

sq
r

sd

ω

ω

2

2

2

2

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

+−−−

5

4

3

2

1

θ
θ
θ
θ
θ

ωω

ωω

sqsdr
sq

sdrsq
sq

sdsqr
sd

sqrsd
sd

uu
dt

du
ii

dt
di

uu
dt

du
ii

dt
di

 (12) 

with  
[ ] ==

T
sssss

T
s 54321 θθθθθθ  

T

rsssrssr TLLTTTTT ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

+=
σσσσσσ

111111  (13) 

and 
5

42
3

s

ss
s θ

θθ
θ =  

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         514



The link between the parameters of the linear 
model and the physical parameters of the induction 
motor is immediate. 
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3  The Pprinciple of Continuous Model 
Parameter Estimation 
Let's take a linear dynamic system described by: 

∑∑
==

=
m

j
j

j

j

n

i
i

i

i dt
tudb

dt
tyda

00

)()(    (15) 

where ai, bj are constant or slowly variable 
coefficients and 10 =a . 

Because this system is linear in parameters, all 
the estimation methods for discrete models can be 
used. But unlike ARMA models used for discrete 
systems, the model (15) is not only a combination of 
input and output samples. It contains also pure time 
derivatives of these signals. A direct measure of the 
pure derivatives signal can be done only if the noise 
level is very low, usually under 5%. The solution is 
to perform linear dynamical operations (LDO) in 
both terms of eq. (15) and changing the initial model 
into an estimation model which verifies a differential 
equation identical with the original one but do not 
contain pure derivatives of the input-output signals 
[4],[5]. The Poisson moment functional method can 
be interpreted as a technical application of the 
modulating function. Let consider a chain of k 
continuous identical filters, each of them in the 
form: 
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The convolution theorem allows to define the 
LDO of k degree the operation performed by a chain 
of k+1 continuous filters on a signal denoted “°” and 
applied at the input of the filters chain. This is 
known as Poisson moment functional (PMF) of k 
degree. 
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On the basis of this definition, a signal filtered by 
a single filter is: 
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If the signal is filtered by k+1 filters  
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In other words, one can say that if the input 
signal of the k+1 filters is the n-th order derivative 
of the signal y(t) on obtains: 
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An equivalent model of (15) can be obtained 
applying the k-order PMF, where k must be choose 
according to the system’s order. 

The equivalent system  
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can be arranged in a matrix form as in (25). 
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squares algorithm, the vector of the estimated 
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As in the case of discrete model parameter 
estimation, if the vector )t(T*ϕ  is known or can be 
built, the vector of parameters θ is obtained 
following this procedure. The main problem is to 
determine )t(T*ϕ  at any moment from available 
signal in a recursive manner. 
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Integrating eq. (22) for n=1 one obtains: 
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For n=2, yields: 
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The last terms in (29) and (31) take into account 
the combined effects of initial conditions and they 
were ignored in the experiment because the filters 
are stable and causal. 

In matrix form, for np ,1=  on obtains: 
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where term ij*  is expressed as: 
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The conclusion is that an n-order equivalent 
estimation model can be obtained if is used PMF 
with the same order of the initial differential 
equation of the system. 
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processing them as in (32), one can obtain the terms 
from (25). Similarly, for signals 
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In the case of analogue filtering, the state 
equation of the filters chain for signal y(t) is: 
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The gain of the filters used is 1/λ<1. The 
attenuation can be high on the entire chain of filters. 
To avoid this high attenuation one can be used filters 
in the form: 
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Eq. (32) becomes in this case: 
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where the term *ij has the value 
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Now, the state equation of the filters chain is: 
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4  On-Line Estimation of Squirrel-
Cage Induction Motor 
The temporal model (12) is over parameterised and 
between parameters exists a nonlinear relation as in 
(13). Thus, the model (12) is restructured in the 
form: 

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

++

4

32
2

2
4

32
2

2

θ
θθωω

θ
θθωω

sdr
sd

r
sq

sqr
sq

r
sd

i
dt

di
dt

id

i
dt

di
dt

id

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

+−−
=

4

3

2

1

θ
θ
θ
θ

ω

ω

sqsdr
sq

sq
sq

sdsqr
sd

sd
sd

uu
dt

du
i

dt
di

uu
dt

dui
dt

di

  (40) 

where 
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The least squares algorithm from eq. (26) is used 
in a recursive form to estimate on-line the 
parameters in (40). On that purpose are used 4 
chains of analog filters with 3 elementary filter cells 
each. The generic signals { })(),(),( 0

2
0
1

0
0 tytyty , with 

{ })(),(),(),( tititutuy sqsdsqsd∈ , are obtained as the 
solutions of the system 
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The particular form for (37) is  
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With (42) and (43) are determined the values 
necessary in the estimation equation: 

θϕ )()( ** tty T=      (44) 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−

+−−
= 0

2
0
2

1
2

0
2

1
2

0
2

0
2

1
2

0
2

1
2* )(

sqsdrsqsqsq

sdsqrsdsdsdT

uuuii
uuuii

t
ω
ω

ϕ  (46) 

The recursive algorithm has the following steps: 
1. Acquisition of measured msbsasbsa uuii ω,,,,  from the 
induction motor, where mω is the mechanical angular 
speed; 
2. Computing of the electric angular speed and of 
the d-q signals  

    );(
2
3)( tyty ad = ( ))(2)(

2
1 tytyy baq += ; mr pωω =  

where p is the number of pole pairs. 
3. Computing of the signal from the estimation 
equation with (42)-(43); 
4. Computing of the vector )(* ty from (45) and of 
the regression vector (46); 
5. Computing of the prediction error 

)1()()()( ** −−= kkkyk T θϕζ  

6. Computing of the covariance matrix 
[ ][ ]

β
ϕϕϕβϕ

)1()()()1()()()1()( *1*** −
−+−−=

− kPkkkPkIkkPIkP TT  

7. Adjusting of the parameters vector 
)()()()1()( * kkkPkk ζϕθθ +−=   

8. Wait onesampling period and jump at the step 1. 
 
 
5   On-Line Algorithm Simulation and 
Results 
The recursive least squares algorithm is attractive 
because is simple and ensures good performances in 
standard conditions. In this case this algorithm must 
be used with some precautions. The algorithm 
assumes that the noise is uncorrelated with the input 
and state variables. This hypothesis could be wrong 
in the case of a nonlinear model used in estimation. 
The convergence in a parameters space point is 
ensured if the input signal satisfies the request of 
persistent excitation of a specified order. Moreover, 
even if the motor is excited with an inverter with a 
simple modulation strategy (like hysteresis 
regulators), the condition of excitation persistence is 
not satisfied [6]. This is way for testing was 
implemented a control structure based on indirect 
rotor field vector control. A voltage-source inverter 
that uses an asynchronous natural modulation 
technique feeds the induction motor. The 
commutation frequency is 1 KHz. The simulated 
control structure is presented in Fig. 1 

Initialisation of the algorithm supposes initial 
values for the parameters vector θ(0), covariance 
matrix P(0), weight factor β, and the pole of PMF λ. 
The parameters vector can be approximated through 
other off-line experiment for a pre-estimation [7], 
[8]. The covariance matrix must be chosen carefully 
because the system is nonlinear and inside the 
system a parametric reaction is present.  

 
Fig. 1 The control structure simulated in MATLAB-SIMULINK 
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The sampling period is 500μs. The experiment 
presented in this paper was done with 1=β , 120=λ  
and T]16024720180[)0( =θ . 
The motor parameters are: 
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The results of the numerical simulation are 
performed in MATLAB-SIMULINK. The 
simulation program calculates also the physical 
parameters according to eq. (14). In Fig. 2-6 are 
presented the speed profile used and the values of 
the estimated parameters. 
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Fig. 2. The imposed/realised speed profile 
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Fig. 3. The estimated/modelled values of Rs 
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Fig. 4. The estimated/modelled values of Ls 
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Fig. 5. The estimated/modelled values of Tr 

 
Fig. 6. The estimated/modelled values 

of the leakage factor σ 
 

6   Conclusion 
The paper presents an on-line estimation algorithm 
based on continuous time model and applied to an 
induction motor. An originality element is the use of 
PMF technique in the estimation of induction motor 
parameters. Because the process model is nonlinear, 
but can be treated as a linear model in parameters in 
steady-state mechanical regime, some precautions 
must be taken into account when the recursive least 
squares algorithm is used. A supervision level might 
be useful to discern between the steady-state and 
transient mechanical regime. The model was built in 
the hypothesis of constant rotor speed. This 
assumption is not verified in the transient state and 
the estimated parameters might be affected.  
The experimental results show a good match 
between estimated parameters and real motor 
parameters. 
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