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Abstract: - Presented in this paper are a method, named the Dynamic Rule Prediction (DRP), which predicts 
the behavior of a system and its application in designing a controller. The aim of the study is to overcome 
some of the limitations and shortcoming of the other controllers. The effectiveness of this method is verified. 
The controller based on DRP possesses two main features. It can control the system without any prior 
knowledge of the controlled plant. It is, also, superior as its high-speed prediction. This paper focuses on the 
robot manipulator controllers and applications of this approach in it. 
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1   Introduction 
 
Since the dynamics of the systems are highly 
nonlinear and may contain uncertain elements, many 
efforts have been made in developing modeling 
control schemes to achieve the precise model of the 
system. Conventionally, many control techniques for 
robot manipulators in industrial operation rely on 
proportional-integral-derivative (PID)-type 
controllers s due to their simple control structure, 
ease of design, and low cost [1,2,8]. However, 
systems have to face various uncertainties in 
practical applications such as, internal friction, and 
external disturbance (in mechanical systems) 
[11,13,18]. All the uncertain or time-varying factors 
could affect the system control performance 
seriously. Many control techniques have been 
investigated as viable means to improve the 
shortcomings of the conventional PID-type 
controllers [4,12,15,20].  Sun and Mills [20] 
proposed an adaptive-learning control scheme to 

improve control performance and could guarantee 
convergence in single and repetitive operational 
modes. But the control scheme requires the system 
dynamics in detail. A model-based PID controller 
was presented by Li et al. [15] to achieve the time-
varying control of a robot manipulator tracker 
system. However, it is difficult to establish an 
appropriate mathematical model for the design of a 
model-based control system. Thus, the general claim 
of traditional intelligent control approaches is that 
they can attenuate the effects of structured 
parametric uncertainty and unstructured disturbance 
using their powerful learning ability without prior 
knowledge of the controlled plant in the design 
processes. 
In the past decade, the applications of intelligent 
control techniques (fuzzy control or neural-network 
control) have received considerable attention [5 –
7,9,10,14,17,22,23]. A control system, which 
comprises PID control and neural network control, 
was presented by Chen et al. [5] for improving the 
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control performance of the system in real time. 
Clifton et al. [6] and Misir et al. [17] designed 
fuzzy–PID controllers. Huang and Lee [9] suggested 
a stable self-organizing fuzzy controller. This 
approach has a learning ability for responding to the 
time-varying characteristics. However, the fuzzy 
rule learning scheme has a latent stability problem. 
Yoo and Ham [23] presented two kinds of adaptive 
control schemes via fuzzy compensator in order to 
confront the unpredictable uncertainties. Though the 
stability of the whole control system can be 
guaranteed, some strict constrained conditions and 
prior system knowledge are required in the control 
process. On the other hand, Kim and Lewis [10] 
dealt with the application of quadratic optimizations 
for motion control of robotic systems using 
cerebellar model arithmetic computer neural 
networks. However, the functional reconstructed 
error, the neural tuning weights and the high-order 
term in Taylor series are assumed to be known 
bounded functions, and some inherent properties of 
the system are required in the design process (e.g., 
skew-symmetry property, bounded system 
parameters and disturbances). In the whole design 
process, no strict constraints and prior knowledge of 
the controlled plant are required, and the asymptotic 
stability of the control system can be guaranteed. To 
accomplish the mentioned motivation, a SMNN 
control system is developed by Wai to control the 
joint position of an n rigid-link robot manipulator 
for periodic motion[34]. 
The aim of this study is to propose a method, named 
the Dynamic Rule Prediction (DRP), to map the 
input function into a virtual space in which the 
values of the function in --- is predictable. In DRP 
modeling process, no prior knowledge of the system 
is required. To design a system using DRP, the 
system, first, modeled by means of DRP. Thereafter 
the behavior of the system could be predicted. So 
the time function of the control variables is 
calculated. 
 
2   Formulation 
The main idea of the Dynamic Rule Prediction 
(DPR) is to map the input variable into a mapped 
space (MS), in which the transformed behavior of 
the input variables is predicable. In the other word, 
DRP is used to determine the MS so that it has the 
mentioned features. 
In order to determine such MS, a transformation of 
the input variables with the following condition is 
considered. The basis of this transformation must 
(1)map zero and initial values of the input variables 
into nonzero and finite values. In addition, 

(2)outside the convergence margin, the output must 
approach zero. Moreover, (3)the transformation 
function should predict the input variables in a short 
period of time. This is determined in terms of the 
type of sampling and the length of the final 
prediction interval. 
The transformation function is defined as follows 
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For the small values of C respect to S, it could be 
proven that 

( )( ) ( )( ), ,T f x C T f x Cλ λ+ = −  
eq.4 
Therefore the eq.4 can be used to predict f at each 
step from its previous values. 
The initial value of λ  is calculated the “feeding 
step” procedure in order to fulfill the above-
mentioned condition for C and S. As shown in 
figure 1, the feeding step requires some measured 
values of the system behavior to set the initial value 
ofλ . First the input value of the system is 
transformed by using an arbitrary value of λ  in 
eq.2. Thereafter the deviation between the predicted 
and actual behavior of the system is calculated and it 
is used to correct the selected value of λ . 

 
Figure 1. Flow chart of the feeding step 
 
Subsequently, for any time sequence sampling input 
the procedure is repeated and the system behaviour 
is predicted, during which minor correction is made 
to previous value of λ  in order the prediction to be 
be acceptable.  

DRP Prediction 
(decrease 
lambda)

Prediction 
is 

acceptable

Change the 
initial value of 

lambda

Input 
values 

Measured 
values 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         94



In other word the transformation function learns the 
system behavior by selecting the appropriate initial 
value of λ  and its subsequent correction. 
In addition the transformation function passes the 
“feeding step” rapidly when the input variable is a 
suitable controlling one. 
3   Controller Design 
In order to design a controller, the DRP model 
should pass the feeding step. The controlled variable 
should be fed to the system. Passing this step the 
model has authority to predict the behavior of the 
system. 
The controller predicts the behavior of the controlled 
plant in term of controller variables. The controller 
sets the controller variables in order to achieve the 
most closely behavior to the desired behavior. 
Schematic of the controller is shown in fig. 2. 

 
Figure 2 schematic of the controller 
4   Numerical Example 
An example herein is provided to verify the 
effectiveness of this approach. This method is 
applied to MK-3s robot for real-time trajectory 
tracking that guarantees the high speed and precise 
end-effector positioning control of robot arms, 
within the maximum joint torque constrain. Here the 
proposed method, named The Dynamic Rule 
Prediction is used to predict the value of the joints 
torque and the most closely end-effector trajectory 
to the desired path, without any optimization 
techniques. 
 
4.1 Robot Arms Architecture 
A schematic of Performer MK-3s industrial robot 
arm and its 2D world co-ordinate system are shown 
in Fig. 3(a) and Fig. 1(b). Out of the five joints of 
the robot arm, the first three joints from the base are 
shown. The end-effector is attached to the hand of 
the arm, which consists of three concentrated joints 
which are manipulated for orientation control of the 
end-effector tool. 

 
Figure 3 Performer MK-3s articulated robot arm (a) 
Control system schematic, (b) Convention of robot 
arm 2D co-ordinate system 
 
Fig. 3(b) shows 2D world co-ordinate system and 
link placement where L0=0.135 [m], L1=O.250 [m], 
and L2=0.215 [m]. This dimension is considered by 
Munasinghe et al. [9]. The joint motors are actuated 
with current or voltage controllers that implement 
torque control of joint motors, according to the DRP 
control algorithm. The required input, i.e., the time-
bases sequences of either position or velocity is 
given by the reference input generator that generates 
the joint trajectories of all joints, according to a 
specific trajectory tracking algorithm. 
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4.2 Modelling of the robot  
The trajectory of the end-effector at random torque, 
random position and random initial velocity is 
calculated from the dynamics of the robot. These 
data feed off-line to the system. Figure 4 shows how 
the model is feed.  

 
Figure 4 Scheme of the feeding step 

 
Figure 5 on-line mode of the control system 
 
After the feeding step, the model could be used to 
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predict the joints torque for the desired end-effector 
trajectory, at the initial conditions. Figure 5 
illustrated the schema of the control system at on-
line mode. 
 
4.3 Tested Trajectory and Constrains 
Objective trajectory was specified by a 10 [cm] 
radius circle centred O= (0, 0.35, 0.1) in the YZ 
plane. The global acceleration limit of torque 
saturation was set to 0.72 [rad/s2] for all joints, , and 
the absolute velocity of the end-effector was set to 
be between 0.18 and 0.25 [m/s]. The desired 
trajectory was contained 300 points. The input data 
were the three next desired end-effector position, 
which is approximately was 30.5 [ms]. 
 
5   Results 
The controller was programmed in MATLAB. After 
the off-line feeding, the model was used to control 
the robot. The obtained results are shown in Fig. 6 
and Fig.7  
Fig.6 shows the desired and the produced path; note 
that the deviation is scaled by 10.  
The root mean square error of the produced 
trajectory (with respect to the desired one) is shown 
in Fig.7. as shown in figures the maximum distance 
between the objective and produced trajectory is not 
exceeded more than 1.1 mm. 
The average time require predicting the prepared 
joints torque was 1.2 [ms]. It shows that the 
proposed method has superior in fast controlling, so 
can be used for high-speed high frequency on-line 
control of the industrial robots. 

 
Figure 6 Desired and produced trajectory, Deviation 
scaled by 10 

 
Figure 7 RMS error, desired and produced trajectory 
 
 
6   Conclusion 
The Dynamic Rule Prediction is illustrated and 
shown how it could be employed as an on-line 
controller without prior knowledge of the controlled 
system and exploiting optimization technique. This 
method is verified by applying to control of the MK-
3s robot for path tracking that produces high speed 
and accurate end-effector point-to-point motion. The 
joints are actuated within the maximum joint torque 
constrain when the absolute velocity was set to be in 
an interval. It is shown this method is faster and 
therefore could be used for fast trajectory decision 
and fast movement of end-effector. 
Although, herein, this method is applied to control 
the MK-3s robot for trajectory tracking, the method 
can be easily applied to other controllers. 
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