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Abstract: — A machine interference problem regarding a group of weaving machines with automatic filling
repair and filling break tolerance is treated in this paper. Two indicators have to be evaluated: the efficiency of
the weaving machines and the work loading for the weaver. A simplified analytical method, based on the
superposition principle and a reduced semi-Markov chain, for evaluating with accuracy the two indicators
previously defined is proposed. A case study in which analytical and simulation results are compared
demonstrates the effectiveness of this simplified analytical approach.
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1 Introduction

The weaving process is a discrete event one because
the warp yarns and the filling yarn break off at
random instants. In case a weaving machine (loom)
is down, because a yarn has broken, a weaver (loom
operator) must remedy the broken yarn and than start
up the loom again. In other words, a weaving
machine is a system with repair. The problem of
allocation of looms to the weavers is a very
important one in a large weaving mill. Two
conflicting aspects must be considered: the loom
efficiency (losses caused by interference) and the
work loading for the weaver. The prediction of the
loom efficiency and the weaver work loading, when
a group of weaving machines are allocated to one ore
more weavers is a machine interference problem.
The problem of allocation of looms in weaving is
widely dealt with in textile literature, both from a
theoretical and a practical point of view (for
example, [1] and [5]). In this work we focus on the
machine interference problem for the looms with
automatic filling repair and filling break tolerance
between packages and the prewinder.

The analytical approach of machine interference
problem is based on the queueing theory. The
standard model is a Markov chain for which the
steady—state probabilities are required. If the Markov
chain has s states, s linear equations must be solved.
This method is simple in essence, but we must have
in view the complexity of Markov models [1], [2],
[3]. For any sizable practical problem s becomes
very large and the solution time becomes very long,
so that, the classical approach is difficult to apply.

When the Markov chain is very large, the two
approaches available to deal with this problem are to
either tolerate the largeness or avoid it. In this work,
a largeness avoidance technique for an approximate
evaluating of the loom efficiency in a weaving
process with automatic filling repair is proposed.

The simulation is a complementary approach for
machine interference problem [1], [4]. A simulation
program based on a stochastic coloured Petri net has
been used in order to validate the analytical results.

The remainder of this paper is organized as
follows. In Section 2 the interference problem
concerning the weaving process is defined in details.
In Section 3 two simple cases with one and two
looms, respectively, are solved based on semi-
Markov chains. In order to generalize the problem, in
Section 4 a simplified analytical method for
evaluating with accuracy the efficiency of the
weaving machines is proposed. Section 5 presents a
case study in which analytical and simulation results
are compared. The paper is closed with final
remarks.

2 Problem Formulation

Consider m identical looms, served by one weaver,
carrying out a weaving process completely known
from a statistical point of view. Usually, a loom
works with many packages for the same filling yarn.
Thus, in case the filling yarn between a package and
the prewinder breaks off, an automatic switch selects
a spare package and avoids the stop of the loom. We
say that the spare packages ensure a filling break
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tolerance for the weaving process. On the other hand,
when the filling yarn breaks off into the shed, the
broken yarn is removed automatically without a
weaver intervention. In this case the loom efficiency
does not depend on the machine interference time.

For a stochastical modelling of a weaving process,
six primary random variables are considered:

« Time to break off a warp yarn — let 4 be the

warp breakage rate;

« Time to break off the filling yarn into the shed —
let A5 be the breakage rate into the shed;

. Time to break off the filling yarn between a
package and the prewinder — let 4., be the
breakage rate between packages and prewinder;

. Time to remedy a warp breakage —let y, be the
remedying rate of warp breakages;

. Time to remedy a breakage into the shed —let u,

be the remedying rate of breakages into the shed;

. Time to remedy a breakage between a package
and the prewinder — let u,, be the remedying
rate of this type of breakages.

For the looms with automatic filling repair (Dornier

AS, for example), the broken yarn is removed

automatically from the shed in a constant interval of

1

RTS
Assume that all parameters A, , Ap, App » s M »

time, noted by R7S . In this case, u, =

tpp and RTS are known. The problem of prediction

the loom efficiency (EF) and the weaver work
loading (WL), depending on the number of looms
allocated to the weaver, is treated in this paper. A
similar problem is presented in [1] and [2], where
weaving machines with filling break tolerance are
considered. In this work we focus especially on the
weaving machine with automatic filling repair, but
the filling break tolerance is also considered.

Assumtions:

. The weaving process is in a steady—state
condition.

« All random variables are exponentially
distributed.

. A weaving machine is either up or down, with no
partial or intermediate states.
. All break events are stochastically independent.

3 Examples
Two examples regarding the weaving machines with
automatic filling repair are presented in this section.
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In the weaving process, two identical packages are
used to feed the shed with filling yarn.

3.1 The first example

Take the most simple case in which the weaver
serves a single weaving machine (m=1). To estimate
the loom efficiency, two different approaches based
on Markov chains are presented: first, a classical
approach and than, a simplified one.

a) A classical approach

The weaving process is modeled by a semi-Markov

chain with the following states:

« 81— The loom is running on and no yarn breaks
exist (the initial state);

« S, — While the loom is running on, the weaver
works to remedy a broken yarn between a
package and the prewinder;

o 83— The loom i1s down and the weaver works to
remedy a warp breakage;

« Sy — The loom is down because of a yarn
breakage into the shed; the broken yarn is
removed automatically from the shed;

o S5 — The loom is down and the weaver works to
remedy a warp breakage. A yarn between a
package and the prewinder is also broken, but
this remedying is temporary suspended.

« 8¢ — The loom is down because both packages
are unavailable. The weaver works to remedy a
breakage between a package and the prewinder.

« S7— The loom is down because of a breakage
into the shed; while the broken yarn is removed
automatically from the shed, the weaver works
to remedy a breakage between a package and the
prewinder.

The state diagram of the semi-Markov chain

describing this weaving process is given in Fig. 1.

Hw MF

App Hpp
Hw UE HMpp
ﬁ'W ﬁ'F

App upp

C S )

Fig. 1 — Markov chain for a weaving machine.

The matrix M, illustrated in Fig. 2, presents the
transition rates between states. The location (7,/) in
matrix M, i # j, comprises the transition rate from

state j to state i. The value of location (i, i) is equal to
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the sum, taken with minus, of the transition rates in

— (AppTAwtir) Upp
App = (upp +Apptiwtir)
Aw 0
Ap 0
0 A
0 App
0 AF
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column i.
w0 0 0o
0 0 Hw Hpp Hr
—Hw 0 0 0 0
0 -ur 0 0 Lipp
0 0 —Uw 0 0
0 0 0 —Hpp 0
0 0 0 0 — (ur +upp) )

Fig. 2 — Transition matrix M of Markov chain presented in Fig. 1.

Let p, be the steady—state probability of state S,

ie{l, 2,...., 7}. To determine these probabilities, the
set of linear equations (1) must be solved, in which

P=[ p,, Py»--» P, 1" and Z=[0,0, ..., 0]".

M-P=Z
)
ptpy et py =1
This set of equations leads to the probabilities,
1
b= g
1+ py + pp + (14 tipp - RTS - py + Py + Ppp +p1)1+P;
1
b= @pl ’ )
1+ p,
where
A A A
Py =", pp =g RIS, ppp =—"-and p, =————-
Hy PP Hp + Hpp

The loom efficiency EF and the work loading for the
weaver WL are equal to

EF =p +p,, WL=1-p,. 3)

b) A simplified approach

In order to reduce the Markov chain, the rule of
superposition is applied, so that, the loom efficiency
is determined in two steps: in the first step, the warp
breakages and the breakages between packages and
the prewinder are considered, whereas, in the second
one, the attention is moved to the filling breakages
into the shed.

Step 1. If the filling breakages into the shed are
ignored, only the states S), S, S5, Ss and Se are
possible. The Markov chain describing this weaving
process is presented in Fig. 3. For this case, the
steady—state probabilities p; and p, are

1
= > > P2 = Puwhr- 4
L+ py + Ppp + PwPre + Ppr

The first estimation for the loom efficiency is

My
S3 Sy
GED
Uw App Upp
[ = ]
App upp
h 4

Fig. 3 — Markov chain for a weaving machine when
the filling breaks into the shed are ignored.

I+
_ Py . (5)
L+ py + Ppp + Py Pre + Prp
Step 2. Now, let us consider only the filling

breakages into the shed. Remember that the rate of
filling breaks is 4, , and the remedying time for a

breakage is a constant noted by R7S. In this case, the

EF'

loom efficiency (EF ) is equal to
! : (6)

1+ A, - RTS
When all types of yarn breakages are considered, we
can use the superposition rule to obtain the loom
efficiency, so that EF = EF' - EF*. (7)

To demonstrate the effectiveness of this simplified
method, a numerical evaluation is presented. Take a
weaving process with filling break tolerance and
automatic filling repair, described by the following
parameters:
« 4, =4.77 warp breakages/h;

. A, =2.05 filling breakages into the shed/h;
« A, = 1.37 yarn breakages between packages and

EF* =

prewinder/h;
o u, =58.88 warp remedies/h;

o u,=220.02 filling remedies/h (R7S=0.004545 h);
o Up,=43.20 yarn remedies between packages and
prewinder/h.
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Based on the result of classical approach (Egs. (3)
and (4)), the loom efficiency is £F=0.9161, and by
using the method in two steps, EF=0.9159.

3.2 The second example

Consider two weaving machines with automatic
filling repair and filling break tolerance, served by
one weaver. In this case, the classical approach for
evaluating the loom efficiency is difficult to apply
because the Markov chain is composed of 46 states.
For this reason, the method in two steps based on the
rule of superposition is more appropriate.

Step 1. If the filling breaks into the shed are ignored,
the Markov chain that models the weaving process is
composed of 26 states, as illustrated in Table 1. The
following notations are used to denote the states of a
weaving machine: WPP — the weaving machine is
running on, no break exists; WPP — the weaving
machine is down because of a warp breakage; WPP
— the weaving machine is running on but a yarn
breakage between a package and prewinder has
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occurred; WPP — the weaving machine is down
because both packages are unavailable. Regarding
the weaver, the notation Ry denotes a warp break
remedying, whereas, Rpp reflects a filling break
remedying between a package and the prewinder.
The transition matrix is M=[a,;], i, je {1, 2, ..., 26},
where a,;, i#j, denotes the rate transition from state j
to state 7, and a;; is the sum of transitions in column
i, taken with minus.

To obtain the steady-state probabilities, MATLAB
program can be used, and then, the loom efficiency

EF' can be calculated by applying Eq. (8).

EFI=p1+p3+p9+0.5(p2+p5+p6+p7+
+ Py + Dyt Pat Pigt Pirt Pig t+ Do)

®)

Step 2. If only the filling breakages into the shed are
considered, the loom efficiency does not depend on
the machine interference time. Consequently, the

loom efficiency ( EF?) is given by Eq. (6).

Table 1 — The states and the transition rates of Markov chain (the second example).

S; The states specification The transition rates a,;, i=/.

Sy {WPP},{WPP} a1 2= Hw; a3~ Hpp

S, {WPP}-Ry,{WPP} 2172 Aw 5 Qo a=Hw s Qr6=Hpp s Q27=pp
S3 {WPP}-Rpp,{ WPP} a3 1= 2App; Q3571w s 3,87 Hpp 5 A3.9=Lipp 5 @311~
Sy {WPP}-Ry,{WPP} 4= Aw; A4 13=pp

Ss {WPP}-Ry,{WPP} asy=App; As,14= Hpp; As,15=Hpp; @519~
Se {WPP}-Rpp,{WPP} as3=Aw

S7 {WPP}—Rpp, { WPP} ar;5=Aw

Sg {WPP}-Rpp,{WPP} as 3=App; as 177 Lw; g 15~ Hpp

So {WPP}—Rpp, {WPP} a9 3=App; Qo,16=Lpp; A9 20~

Sio {WPP}-Ry, {WPP} a10,5=Aw; Ao 1= tpp

Sii {WPP},{WPP}-Ry a,0=Hw; ai,17=HMHpp

S {WPP}-Ry,{WPP} a12,5=App; A1220=Hpp

Si3 {WPP}—Rpp, { WPP} ap6=Aw; a7 =Aw

Si4 {WPP}-Rpp,{ WPP} a146=App; A149=Aw

Sis {WPP}—Rpp, { WPP} ars7=App; ais5=Aw

Si6 {WPP}—Rpp, {WPP} a168=App; A169=APP; A1624=HpP; 16,26~ L
Si7 {WPP}—Rpp,{ WPP} ay7.9=Aw

Sis {WPP}-Rpp,{WPP} a 18,9:/1PP

Sio {WPP},{WPP}-Ry aon=Aw

S0 {WPP},{WPP}-Ry 20,117 App; @2023=Hpp 5 @2025= My

S {WPP}—Rpp, { WPP} ax1,15= s @117 Aws

S» {WPP}—Rpp,{ WPP} 022,14:/1PP; 022,18:/1W;

83 {WPP}—Rpp,{WPP} ax3,16=Aw; a23,17=App;

Sn4 {WPP}-Rpp,{ WPP} 24,16~ AP (24,18~ App;

S5 {WPP},{WPP}-Ry s 20= A
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S2 {WPP},{WPP}-Ry,
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azs,zozﬂpp;

Finally, Eq. (7) is used to obtain the loom efficiency.
With the parameters presented in section 3.1, the
loom efficiency is equal to EF=0.9051. A closed
result has been obtained by simulation, namely,
EF=0.9053. As a conclusion, the number of states of
Markov chain increases dramatically when the
weaver serves more weaving machines. Usually, one
weaver serves up to ten weaving machines, when the
Markov chain has hundreds of states. Taking into
account the complexity of Markov chains, the
classical approach for exact evaluation of loom
efficiency is difficult to apply. For this reason, an
approximate analytical method is proposed in the
following section.

4 Simplified analytical approach
for machine interference problem

For the general case in which one weaver serves m
weaving machines, the Markov chain is too large if
all random variables presented in section 2 are
considered. For this reason, we focus on an
approximate method and propose a reduced Markov
chain able to predict with accuracy the efficiency of
the weaving machines. To simplify the analytical
model, two points were having in view, as follows.

1) Regarding the automatic filling repair — The down
time for remedying a breakage into the shed does not
depend on the interference time, so that the loom
efficiency can be evaluated in two steps, as presented
in Section 3.

2) Regarding the filling break tolerance — To reduce
the Markov chain when many packages are used for
the same filling yarn, some serial and parallel
transformations can be applied [1]. In this way, an
approximite model with only two random variables
describing the weaving process can be obtained.
These two random variables are: the time to stop the
weaving process because of a breakage (a warp or a
filling breakage), and the time to remedy a yarn
breakage. Let A and u be the stop and the remedying
rate, respectively. Assuming that both random
variables are exponentially distributed, the weaving
process with m weaving machines can be modeled
by a reduced Markov chain with m—+1 states,

H u Yz

(m-2)A

(m-i+1)A

as presented in Fig. 4. The steady—state probabilities
are given by the Egs. (9) and (10), where p = 4.
7

1
pl = m i=1 : (9)
1+Z(p’H(m—k)J
i=1 k=0
i—1
po=p ' pJ[(m—k), i=2,3,....m. (10)

k=0

The following notations are introduced: md,, — the
mean number of machines down in a certain time;
A,,— the mean stop rate in the group of m weaving

machines; #r,, — the mean remedying time for a yarn
breakage; ¢d,, — the mean down time of a weaving
machine because of a breakage; ti, — the mean
interference time. The following equations can be
written:

m+1

md, =Y (i-Dp,, A, =Y. (m-i+Dip, (11)
i=2 i=1
i, 1 ,td, = md,, (Little formula) (12)
H A

td, =ti, +1r,. (13)
m+1
Z (i—Dp,

It follows that, £, =—= -—. (14

m—i+hip, *
i=1

Let ¢, be the coefficient of variation for time to
remedy a weaving machine, obtained by simulation.
As shown in [5, pp.170], the estimation of #,, can be
improved by applying a correction factor, so that

* 1+ C2
ti, =ti v, 15
=ty — (15)
It follows that, md,, = (i, + l)/lm , and finally,
U
EF =1- " (16)
m

Symbol * is used to denote the estimation when
the correction factor is considered.

u u H
RN s Sy
(m-i)A 22 2
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Fig. 4 — Reduced Markov chain for m weaving machines served by one weaver.

The work loading for the weaver is equal to

WL=Yp,. (17)

5 Case Study

In this section, analytical and simulation results are
compared in order to verify the effectiveness of the
reduced model presented in this paper.

Take the weaving process with filling break
tolerance and automatic filling repair as presented in
section 3.1. Remember the parameters of the weaving
process: 4, =4.77, 4,=2.05, 4,,=1.37 breakages/h

and u,, =58.88, u,=220.02, u,,= 43.20 remedies/h.

Note that, in this case study, the weaver does not
suspend the remedying process of a broken yarn
between a spare package and the prewinder, when
other breakage occours, as considered in section 3.1.

In order to evaluate the loom efficiency when m
looms are allocated to the weaver, the method in two
steps will be applied.

Step 1. In this stage, the filling breakages into the
shed are ignored. A reduced Markov model with
only two random variables is obtained by applying a
parallel and a serial transformation, as proposed in
[1]. Thus, for a weaving machine, the breakage rate
A and the remedying rate u are given by Eq. (18)

and Eq. (19), respectively.

22
A=Ay +—22 (18)
App + Hpp
2
Ay + 7
= App + Hpp ) (19)
Ay Ao

4+
Hy  Hpp(App + tpp)

With these values of 4 and p, the loom efficiency

EF'and the work loading WL can be estimated by
using Eqgs. (11) — (17).
Step 2. Only the filling breakages into the shed are
considered. The loom efficiency EF’ is given by
Eq. (6), where r7s = 1
Hp

When all types of yarn breakages are considered,
the loom efficiency is EF = EF'-EF* . Numerical
results when one weaver serves up to eight weaving
machines are presented in Table 2. For simulation, a
model of stochastic coloured Petri net has been used

([1], [4]). Note the good accordance between the
analytical and the simulation results.
Table 2 — Anaytical and simulation results
(expressed as %).

Weaving Machine Percentage of
machines efficiency (EF) working time (WL)
allocated _
to the analytical  simulation analytical simulation
weaver results results results results
M=1 91.37 91.39 11.14 11.14
M=2 90.55 90.58 22.15 22.14
M=3 89.70 89.71 32.81 32.81
M=4 88.71 88.70 43.27 43.28
m=5 87.55 87.56 53.41 53.42
m=6 86.25 86.27 63.19 63.18
m=T7 84.77 84.79 72.48 72.47
m==8 83.12 83.11 81.10 81.11

6 Final Remark

An approximate analytical method able to predict
with accuracy the efficiency of the weaving machine
with automatic filling repair and filling break
tolerance is proposed. This work improves the result
presented in [1], where a similar problem is treated.
In this paper, all random variables describing the
weaving process are exponentially distributed. But,
as shown in [5, pp.169], in many cases it is necessary
to consider a normal or gamma distribution for the
remedying time. This point will be the subject for
upcoming papers.
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