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Abstract: − A machine interference problem regarding a group of weaving machines with automatic filling 
repair and filling break tolerance is treated in this paper. Two indicators have to be evaluated: the efficiency of 
the weaving machines and the work loading for the weaver. A simplified analytical method, based on the 
superposition principle and a reduced semi-Markov chain, for evaluating with accuracy the two indicators 
previously defined is proposed. A case study in which analytical and simulation results are compared 
demonstrates the effectiveness of this simplified analytical approach. 
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1 Introduction 
The weaving process is a discrete event one because 
the warp yarns and the filling yarn break off at 
random instants. In case a weaving machine (loom) 
is down, because a yarn has broken, a weaver (loom 
operator) must remedy the broken yarn and than start 
up the loom again. In other words, a weaving 
machine is a system with repair. The problem of 
allocation of looms to the weavers is a very 
important one in a large weaving mill. Two 
conflicting aspects must be considered: the loom 
efficiency (losses caused by interference) and the  
work loading for the weaver. The prediction of the 
loom efficiency and the weaver work loading, when 
a group of weaving machines are allocated to one ore 
more weavers is a machine interference problem. 
The problem of allocation of looms in weaving is 
widely dealt with in textile literature, both from a 
theoretical and a practical point of view (for 
example, [1] and [5]). In this work we focus on the 
machine interference problem for the looms with 
automatic filling repair and filling break tolerance 
between packages and the prewinder. 
 The analytical approach of machine interference 
problem is based on the queueing theory. The 
standard model is a Markov chain for which the 
steady−state probabilities are required. If the Markov 
chain has s states, s linear equations must be solved. 
This method is simple in essence, but we must have 
in view the complexity of Markov models [1], [2], 
[3]. For any sizable practical problem s becomes 
very large and the solution time becomes very long, 
so that, the classical approach is difficult to apply. 

When  the  Markov  chain  is  very  large, the two 
approaches available to deal with this problem are to 
either tolerate the largeness or avoid it. In this work, 
a largeness avoidance technique for an approximate 
evaluating of the loom efficiency in a weaving 
process with automatic filling repair is proposed.  
 The simulation is a complementary approach for 
machine interference problem [1], [4]. A simulation 
program based on a stochastic coloured Petri net has 
been used in order to validate the analytical results. 
 The remainder of this paper is organized as 
follows. In Section 2 the interference problem  
concerning the weaving process is defined in details. 
In Section 3 two simple cases with one and two 
looms, respectively, are solved based on semi-
Markov chains. In order to generalize the problem, in 
Section 4 a simplified analytical method for 
evaluating with accuracy the efficiency of the 
weaving machines is proposed. Section 5 presents a 
case study in which analytical and simulation results 
are compared. The paper is closed with final 
remarks.  
 
 
2 Problem Formulation 
Consider m identical looms, served by one weaver,  
carrying out a weaving process completely known 
from a statistical point of view. Usually, a loom 
works with many packages for the same filling yarn. 
Thus, in case the filling yarn between a package and 
the prewinder breaks off, an automatic switch selects 
a spare package and avoids the stop of the loom. We 
say that the spare packages ensure a filling break 
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tolerance for the weaving process. On the other hand, 
when the filling yarn breaks off into the shed, the 
broken yarn is removed automatically without a 
weaver intervention. In this case the loom efficiency 
does not depend on the machine interference time.    
 For a stochastical modelling of a weaving process,  
six primary random variables are considered:  
• Time to break off a warp yarn −  let be the 

warp breakage rate; 
Wλ

• Time to break off the filling yarn into the shed −  
let  be the breakage rate into the shed; Fλ

• Time to break off the filling yarn between a 
package and the prewinder −  let  be the 
breakage rate between packages and prewinder;  

PPλ

• Time to remedy a warp breakage − let  be the 
remedying rate of warp breakages;  

Wμ

• Time to remedy a breakage into the shed − let  
be the remedying rate of breakages into the shed;  

Fμ

• Time to remedy a breakage between a package 
and the prewinder − let  be the remedying 
rate of this type of breakages. 

PPμ

For the looms with automatic filling repair (Dornier 
AS, for example), the broken yarn is removed 
automatically from the shed in a constant interval of 

time, noted by . In this case, RTS
RTSF

1
=μ .  

Assume that all parameters , , , , ,  
 and are known. The problem of prediction 

the loom efficiency (EF) and the weaver work 
loading (WL), depending on the number of looms 
allocated to the weaver, is treated in this paper. A 
similar problem is presented in [1] and [2], where 
weaving machines with filling break tolerance are 
considered. In this work we focus especially on the 
weaving machine with automatic filling repair, but 
the filling break tolerance is also considered.  

Wλ Fλ PPλ Wμ Fμ
PPμ RTS

Assumtions: 
• The weaving process is in a steady−state 

condition. 
• All random variables are exponentially 

distributed. 
• A weaving machine is either up or down, with no 

partial or intermediate states. 
• All break events are stochastically independent. 
 
 

3 Examples 
Two examples regarding the weaving machines with 
automatic filling repair are presented in this section.  

In the weaving process, two identical packages are 
used to feed the shed with filling yarn.  
3.1 The first example 
Take the most simple case in which the weaver 
serves a single weaving machine (m=1). To estimate 
the loom efficiency, two different approaches based 
on Markov chains are presented: first, a classical 
approach and than, a simplified one.  
a) A classical approach 
The weaving process is modeled by a semi-Markov 
chain with the following states:   
• S1 − The loom is running on and no yarn breaks 

exist (the initial state); 

• S2 − While the loom is running on, the weaver 
works to remedy a broken yarn between a 
package and the prewinder; 

• S3 − The loom is down and the weaver works to 
remedy a warp breakage; 

• S4 − The loom is down because of a yarn 
breakage into the shed; the broken yarn is 
removed automatically from the shed;  

• S5 − The loom is down and the weaver works to 
remedy a warp breakage. A yarn between a  
package and the prewinder is also broken, but 
this remedying is temporary suspended.  

• S6 − The loom is down because both packages 
are unavailable. The weaver works to remedy a 
breakage between a package and the prewinder.  

• S7 − The loom is down because of a breakage 
into the shed; while the broken yarn is removed 
automatically from the shed, the weaver works 
to remedy a breakage between a package and the 
prewinder.  

      The state diagram of the semi-Markov chain 
describing this weaving process is given in Fig. 1.  

S1S3

S2

µW µF

λW

λW

λF

λF

λPP µPPµW

µPP

µF

λPP

S4

S7S5

S6

µPP

 

Fig. 1 − Markov chain for a weaving machine. 
 
The matrix M, illustrated in Fig. 2, presents the 
transition rates between states. The location (i, j) in 
matrix M, ji ≠ , comprises the transition rate from 
state j to state i. The value of location (i, i) is equal to 
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the sum, taken with minus, of the transition rates in column i.  
 
 

 

− (λPP+λW+λF) μPP μW μF 0 0 0 
λPP − ( μPP +λPP+λW+λF) 0 0 μW μPP μF

λW 0 − μW 0 0 0 0 
λF 0 0 − μF 0 0 μPP

0 λW 0 0 − μW 0 0 
0 λPP 0 0 0 − μPP 0 
0 λF 0 0 0 0 − (μF +μPP) 

Fig. 2 − Transition matrix M of Markov chain presented in Fig. 1.

Let  beip  the steady−state probability of state Si, 
i∈{1, 2,…., 7}. To determine these probabilities, the 
set of linear equations (1) must be solved, in which 
P=[ ]721 ..., ,, ppp T, and  Z=[0, 0, ..., 0]T. 

⎩
⎨
⎧

=+⋅⋅⋅++
=

1   
  

721 ppp
Z P·M

                                           (1) 

This set of equations leads to the probabilities, 
   

1
)1(1

1

1
11

1

ρ
ρ

ρρρρμρρ
+

+++⋅⋅++++
=

PP
PPWPPFW RTS

p  

1
1

2 1
pp PP

ρ
ρ
+

= ,                                                         (2) 

where  
 

PPF

F

PP

PP
PPFF

W

W
W RTS

μμ
λρ

μ
λρλρ

μ
λρ

+
==⋅== 1 and  , , . 

 

The loom efficiency EF and the work loading for the 
weaver WL are equal to  
 

                                      (3) ,21 ppEF += .1 1pWL −=
 
b) A simplified approach 
In order to reduce the Markov chain, the rule of 
superposition is applied, so that, the loom efficiency 
is determined in two steps: in the first step, the warp 
breakages and the breakages between packages and 
the prewinder are considered, whereas, in the second 
one, the attention is moved to the filling breakages 
into the shed. 
Step 1. If the filling breakages into the shed are 
ignored, only the states S1, S2, S3, S5 and S6 are 
possible. The Markov chain describing this weaving 
process is presented in Fig. 3. For this case, the 
steady−state probabilities p1 and p2 are  

  
1

1
21

PPPPWPPW

p
ρρρρρ ++++

= , 12 pp Wρ= .         (4) 

The first estimation for the loom efficiency is 

 

 

 

 

 

 

 

S1S3
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λW
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λPP µPPµW

µPPλPP
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Fig. 3 − Markov chain for a weaving machine when 
            the filling breaks into the shed are ignored.  

 

    
2

1

1
1

PPPPWPPW

WEF
ρρρρρ

ρ
++++

+
= .                  (5) 

 Step 2. Now, let us consider only the filling 
breakages into the shed. Remember that the rate of 
filling breaks is ,Fλ  and the remedying time for a 
breakage is a constant noted by RTS. In this case, the 
loom efficiency ( ) is equal to 2EF
 

RTS
EF

F ⋅+
=

λ1
12 .                                    (6) 

When all types of yarn breakages are considered, we 
can use the superposition rule to obtain the loom 
efficiency, so that 21 EFEFEF ⋅= .                        (7) 
 To demonstrate the effectiveness of this simplified 
method, a numerical evaluation is presented. Take a 
weaving process with filling break tolerance and 
automatic filling repair, described by the following 
parameters:  
• = 4.77 warp breakages/h; Wλ
• = 2.05 filling breakages into the shed/h; Fλ
• = 1.37 yarn breakages between packages and 

prewinder/h; 

PPλ

• = 58.88 warp remedies/h;  Wμ
• = 220.02 filling remedies/h (RTS=0.004545 h); Fμ
• = 43.20 yarn remedies between packages and  

prewinder/h. 
PPμ
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 Based on the result of classical approach (Eqs. (3) 
and (4)), the loom efficiency is EF=0.9161, and by 
using the method in two steps, EF=0.9159. 
  
3.2 The second example 
Consider two weaving machines with automatic 
filling repair and filling break tolerance, served by 
one weaver. In this case, the classical approach for 
evaluating the loom efficiency is difficult to apply  
because the Markov chain is composed of 46 states. 
For this reason, the method in two steps based on the 
rule of superposition is more appropriate. 

Step 1. If the filling breaks into the shed are ignored, 
the Markov chain that models the weaving process is 
composed of 26 states, as illustrated in Table 1. The 
following notations are used to denote the states of a 
weaving machine: WPP – the weaving machine is 
running on, no break exists; WPP – the weaving 
machine is down because of a warp breakage; WPP 
– the weaving machine is running on but a yarn 
breakage between a package and prewinder has 

occurred; WPP – the weaving machine is down 
because both packages are unavailable. Regarding 
the weaver, the notation RW denotes a warp break 
remedying, whereas, RPP reflects a filling break 
remedying between a package and the prewinder.   

The transition matrix is M=[ai,j], i, j∈{1, 2, …, 26}, 
where ai,j, i≠ j, denotes the rate transition from state j 
to state i, and ai,i  is the sum of transitions in column 
i, taken with minus. 
 To obtain the steady-state probabilities, MATLAB 
program can be used, and then, the loom efficiency 

1EF can be calculated by applying Eq. (8). 

).
(5.0

2018171614118

7652931
1

ppppppp
pppppppEF

+++++++
+++++++=

         (8) 

Step 2. If only the filling breakages into the shed are 
considered, the loom efficiency does not depend on 
the machine interference time. Consequently, the 
loom efficiency ( 2EF ) is given by Eq. (6). 

 
                     Table 1 – The states and the transition rates of Markov chain (the second example). 

 

Si The states specification The transition rates ai,j, i≠j. 

S1   {WPP},{WPP}            a1,2=μW ; a1,3=μPP

S2   {WPP}–RW,{WPP}    a2,1=2λW ; a2,4=μW ; a2,6=μPP ; a2,7=μPP

S3   {WPP}–RPP,{WPP}     a3,1= 2λPP ; a3,5=μW ; a3,8=μPP ; a3,9=μPP ; a3,11=μW

S4   {WPP}–RW,{WPP}    a4,2= λW; a4,13=μPP

S5   {WPP}–RW,{WPP}    a5,2=λPP; a5,14=μPP; a5,15=μPP; a5,19=μW

S6   {WPP}–RPP,{WPP}     a6,3=λW

S7   {WPP}–RPP,{WPP}     a7,3=λW

S8   {WPP}–RPP,{WPP}     a8,3=λPP; a8,12=μW; a8,18=μPP

S9   {WPP}–RPP,{WPP}     a9,3=λPP; a9,16=μPP; a9,20=μW

S10   {WPP}–RW,{WPP}    a10,5=λW; a10,21=μPP

S11   {WPP},{WPP}–RW     a11,10=μW; a11,17=μPP

S12   {WPP}–RW,{WPP}     a12,5=λPP; a12,22=μPP

S13   {WPP}–RPP,{WPP}     a13,6=λW; a13,7=λW

S14   {WPP}–RPP,{WPP}     a14,6=λPP; a14,9=λW

S15   {WPP}–RPP,{WPP}     a15,7=λPP; a15,8=λW

S16   {WPP}–RPP,{WPP}     a16,8=λPP; a16,9=λPP; a16,24=μPP; a16,26=μW

S17   {WPP}–RPP,{WPP}     a17,9=λW

S18   {WPP}–RPP,{WPP}    a18,9=λPP  
S19   {WPP},{WPP}–RW     a19,11=λW  
S20   {WPP},{WPP}–RW    a20,11=λPP; a20,23=μPP ; a20,25=μW  
S21   {WPP}–RPP,{WPP}    a21,14=λW; a21,17=λW; 
S22   {WPP}–RPP,{WPP}    a22,14=λPP; a22,18=λW; 
S23   {WPP}–RPP,{WPP}    a23,16=λW; a23,17=λPP;  
S24   {WPP}–RPP,{WPP}     a24,16=λPP; a24,18=λPP; 
S25   {WPP},{WPP}–RW    a25,20=λW;  
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S26   {WPP},{WPP}–RW    a26,20=λPP; 
 

Finally, Eq. (7) is used to obtain the loom efficiency. 
With the parameters presented in section 3.1, the 
loom efficiency is equal to EF=0.9051. A closed 
result has been obtained by simulation, namely, 
EF=0.9053. As a conclusion, the number of states of 
Markov chain increases dramatically when the 
weaver serves more weaving machines. Usually, one 
weaver serves up to ten weaving machines, when the 
Markov chain has hundreds of states. Taking into 
account the complexity of Markov chains, the 
classical approach for exact evaluation of loom 
efficiency is difficult to apply. For this reason, an 
approximate analytical method is proposed in the 
following section. 
 
 
4 Simplified analytical approach    
for machine interference problem 
For the general case in which one weaver serves m 
weaving machines, the Markov chain is too large if 
all random variables presented in section 2 are 
considered. For this reason, we focus on an 
approximate method and propose a reduced Markov 
chain able to predict with accuracy the efficiency of 
the weaving machines. To simplify the analytical 
model, two points were having in view, as follows. 
1) Regarding the automatic filling repair – The down 
time for remedying a breakage into the shed does not 
depend on the interference time, so that the loom 
efficiency can be evaluated in two steps, as presented 
in Section 3.  
2) Regarding the filling break tolerance – To reduce 
the Markov chain when many packages are used for 
the same filling yarn, some serial and parallel 
transformations can be applied [1]. In this way, an 
approximite model with only two random variables 
describing the weaving process can be obtained. 
These two random variables are: the time to stop the 
weaving process because of a breakage (a warp or a 
filling breakage), and the time to remedy a yarn 
breakage. Let λ  and μ be the stop and the remedying 
rate, respectively. Assuming that both random 
variables are exponentially distributed, the weaving 
process with m weaving machines can be modeled 
by a reduced Markov chain with m+1 states, 

 as presented in Fig. 4. The steady−state probabilities 
are given by the Eqs. (9) and (10), where 

μ
λρ = . 

 .
)(1

1

1

1

0

1

∑ ∏
=

=

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=
m

i

i

k

i km
p

ρ
                      (9) 

             (10) ......,,3,2,)(
1

0
1

1 mikmpp
i

k

i
i =−= ∏

−

=

−ρ

 The following notations are introduced: mdm – the 
mean number of machines down in a certain time; 

mλ – the mean stop rate in the group of m weaving 
machines; trm − the mean remedying time for a yarn 
breakage; tdm − the mean down time of a weaving 
machine because of a breakage; tim − the mean 
interference time. The following equations can be 
written: 

 ,     (11)  ∑
+

=

−=
1

2

)1(
m

i
im pimd ∑

=

+−=
m

i
im pim

1

)1( λλ

 
μ
1

=mtr  , 
m

m
m

mdtd
λ

= (Little formula)             (12) 

 mmm trtitd += .                                                 (13) 

    It follows that, 
μλ

1

)1(

)1(

1

1

2 −
+−

−
=

∑

∑

=

+

=
m

i
i

m

i
i

m

pim

pi
ti .    (14) 

 Let cv be the coefficient of variation for time to 
remedy a weaving machine, obtained by simulation. 
As shown in [5, pp.170], the estimation of tim can be 
improved by applying a correction factor, so that 

 .
2

1 2
* v

mm
ctiti +

=                                                 (15) 

 It follows that, mmm timd λ
μ

)1( ** += , and finally, 

 
m

mdEF m
*

1−= .                                                (16) 

 Symbol * is used to denote the estimation when 
the correction factor is considered. 

mλ (m-1)λ (m-2)λ λ

μ μ μ μμ μ

• • •• • •

μ

(m-i+1)λ (m-i)λ 2λ
S1 S2 S3 Sm Sm+1Si
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Fig. 4 − Reduced Markov chain for m weaving machines served by one weaver. 
The work loading for the weaver is equal to 

                                                       (17) ∑
+

=

=
1

2

.
m

i
ipWL

 
 
5 Case Study 
In this section, analytical and simulation results are 
compared in order to verify the effectiveness of the 
reduced model presented in this paper.  
 Take the weaving process with filling break 
tolerance and automatic filling repair as presented in 
section 3.1.  Remember the parameters of the weaving 
process: =4.77, =2.05, =1.37  breakages/h 
and =58.88, =220.02, = 43.20 remedies/h. 
Note that, in this case study, the weaver does not 
suspend the remedying process of a broken yarn 
between a spare package and the prewinder, when 
other breakage occours, as considered in section 3.1. 

Wλ Fλ PPλ

Wμ Fμ PPμ

 In order to evaluate the loom efficiency when m 
looms are allocated to the weaver, the method in two 
steps will be applied.  
Step 1. In this stage, the filling breakages into the 
shed are ignored. A reduced Markov model with 
only two random variables is obtained by applying a 
parallel and a serial transformation, as proposed in 
[1]. Thus, for a weaving machine, the breakage rate 
λ  and the remedying rate μ  are given by Eq. (18) 
and Eq. (19), respectively. 

 .
2

PPPP

PP
W μλ

λλλ
+

+=                                          (18) 

 .

)(

2

2

PPPPPP

PP

W

W

PPPP

PP
W

μλμ
λ

μ
λ

μλ
λλ

μ

+
+

+
+

=                                                (19) 

 
With these values of λ  and μ , the loom efficiency 

1EF and the work loading WL can be estimated by 
using Eqs. (11) – (17).  
Step 2. Only the filling breakages into the shed are 
considered. The loom efficiency 2EF  is given by 
Eq. (6), where 

F
RTS

μ
1

= . 

    When all types of yarn breakages are considered,  
the loom efficiency is 21 EFEFEF ⋅= . Numerical 
results when one weaver serves up to eight weaving 
machines are presented in Table 2. For simulation, a 
model of stochastic coloured Petri net has been used 

([1], [4]). Note the good accordance between the 
analytical and the simulation results. 

Table 2 − Anaytical and simulation results 
(expressed as %). 

 

 Machine  
efficiency (EF) 

Percentage of 
working time (WL) 

Weaving
machines
allocated 

to the 
weaver 

analytical 
results 

simulation 
results 

analytical 
results 

simulation 
results 

M=1 91.37 91.39 11.14 11.14 
M=2 90.55 90.58 22.15 22.14 
M=3 89.70 89.71 32.81 32.81 
M=4 88.71 88.70 43.27 43.28 
m=5 87.55 87.56 53.41 53.42 
m=6 86.25 86.27 63.19 63.18 
m=7 84.77 84.79 72.48 72.47 

 

m=8 83.12 83.11 81.10 81.11 
 
 

6 Final Remark 
An approximate analytical method able to predict 
with accuracy the efficiency of the weaving machine 
with automatic filling repair and filling break 
tolerance is proposed. This work improves the result 
presented in [1], where a similar problem is treated. 
In this paper, all random variables describing the 
weaving process are exponentially distributed. But, 
as shown in [5, pp.169], in many cases it is necessary 
to consider a normal or gamma distribution for the  
remedying time. This point will be the subject for 
upcoming papers. 
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