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Abstract:- In this paper we consider a nonlinear hyperbolic equation with a memory term which
can be used in mathematical models for viscoleasticity problems. The qualitative properties of the
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Key words: Viscoelasticity problem, qualitative properties, stability, numerical methods, implicit
method, implicit-explicit method.

1 Introduction

Let us consider the hyperbolic equation

ρ
∂2u

∂t2
(x, t) + α

∂u

∂t
(x, t) = γ

∂2u

∂x2
(x, t)

+
∫ t

0
k(t− s)

∂2u

∂x2
(x, s) ds + f(x, t, u(x, t))

x ∈ (a, b), t > 0,
(1)

where k(s) is a scalar function smooth enough
and which will be specified later, with initial con-
ditions

{
u(0, x) = u0(x), x ∈ (a, b)
∂u

∂t
(0, x) = u1(x), x ∈ (a, b)

(2)

and

u(a, t) = ua(t), u(b, t) = ub(t), t > 0. (3)

Initial boundary value problem (IBVP) (1)-(3)
arises from a variety of mathematical models in
engineering and physical sciences. We mention,
for instance, the theory of viscoelasticity (see for
instance [6], [7], [8]). In this case u represents the
displacement of a body with density ρ, viscosity
α and under external force f depending of the
displacement. The use of exponential kernels of
type k(s) = −σ

τ
e−

s
τ has been largely considered

in the context of heat conduction problems with
memory in time ([1], [5], [9]). Attending that the
heat conduction problem can be seen has a sin-
gular perturbation when the density ρ is small,
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in what follows we take the exponential kernel
mentioned before.

Our aim in this paper is to study the qualita-
tive behavior of the solution of (1)-(2)- (3) from
the theoretical and numerical points of view. Es-
timates for the kinetic energy, potential energy
and to the past in time of the gradient of the
displacement are obtained and allow to conclude
the stability of (1)-(2)-(3). From a numerical
point of view and following the approach intro-
duced in [3] for the generalized Fisher equation
and in [4] for a linear viscoelasticity problem,
we propose numerical methods which enable us
to compute numerical approximations presenting
the qualitative behavior of the continuous solu-
tion provided some conditions on the stepsize are
imposed. Numerical results illustrating the be-
havior of the methods studied are also included.

The paper is organized as follows. In Section
2 the theoretical study is presented. Numerical
methods are analysed in Section 3. Finally, in
Section 4, the numerical simulation is included.

2Continuous qualitative behav-
ior

In Theorem 1 we establish an estimate to the ki-
netic and potential energies and to the past in
time of the gradient of the displacement when
γ 6= σ. This result enables to conclude the sta-
bility of (1)-(2)-(3).

Theorem 1 Let u be a solution of (1)-(2) with
homogeneous boundary conditions. Let us sup-
pose that

u(x, t) ∈ [c, d], x ∈ [a, b], t ∈ [0, T ], (4)

with c, d constants, and

∂`u

∂t`
(t),

∫ t

0
e−

t−s
τ

∂`u

∂x`
(s)ds ∈ L2[a, b], (5)

for ` = 1, 2, t ∈ (0, T ].
If f is continuously differentiable in the third

argument and f(x, t, 0) = 0 for x ∈ [a, b], t ∈

[0, T ], then, for each t ∈ (0, T ], holds

ρ‖∂u

∂t
(t)‖2

L2 + (γ − σ)‖∂u

∂x
(t)‖2

L2

+σ‖1
τ

∫ t

0
e−

t−s
τ

∂u

∂x
(s) ds +

∂u

∂x
(t)‖2

L2

≤ e
max


1, 1

γ−σ

(
2
τ
+

(f ′max)2(b−a)2

ρ+2α

)ff
t(

ρ‖u1‖2
L2

+(γ − σ)‖u′0‖2
L2

)

(6)

where f ′max = max
[a,b]×[0,T ]×[c,d]

∂f

∂z
.

Proof: Multiplying each member of (1) by
∂u

∂t
with respect to the L2 inner product and inte-
grating by parts we obtain

ρ(
∂2u

∂t2
(t),

∂u

∂t
(t)) + α‖∂u

∂t
(t)‖2

L2

= −γ(
∂u

∂x
(t),

∂2u

∂t∂x
(t))

−σ

τ
(
∫ t

0
e−

t−s
τ

∂u

∂x
(s) ds,

∂2u

∂x∂t
(t)) + (f(u(t)),

∂u

∂t
(t)) .

(7)
It can be shown that

(
1
τ

∫ t

0
e−

t−s
τ

∂u

∂x
(s) ds,

∂2u

∂x∂t
(t))

=
1
2

d

dt
‖1
τ

∫ t

0
e−

t−s
τ

∂u

∂x
(s) ds +

∂u

∂x
(t)‖2

L2

−1
2

d

dt
‖∂u

∂x
(t)‖2

L2 − 1
τ
‖∂u

∂x
(t)‖2

L2

+
1
τ
‖1
τ

∫ t

0
e−

t−s
τ

∂u

∂x
(s) ds‖2

L2 .

(8)

Due to the fact that f(x, t, 0) = 0, we have

(f(u(t)),
∂u

∂t
(t)) ≤ 1

4η2
(f ′max)

2‖u(t)‖2
L2 + η2‖∂u

∂t
(t)‖2

L2

(9)
for some positive constant η.

Considering that

(
∂2u

∂t2
(t),

∂u

∂t
(t)) =

1
2

d

dt
‖∂u

∂t
(t)‖2

L2

and

(
∂u

∂x
(t),

∂2u

∂t∂x
(t)) =

1
2

d

dt
‖∂u

∂x
(t)‖2

L2 ,
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from (7), (8) and (9), we deduce the inequality

d

dt

(
ρ‖∂u

∂t
(t)‖2

L2 + (γ − σ)‖∂u

∂x
(t)‖2

L2

+σ‖1
τ

∫ t

0
e−

t−s
τ

∂u

∂x
(s) ds +

∂u

∂x
(t)‖2

L2

)

≤ 2(−α + η2)‖∂u

∂t
(t)‖2

L2 +
2σ

τ
‖∂u

∂x
‖2

L2

−2σ

τ
‖1
τ

∫ t

0
e−

t−s
τ

∂u

∂x
(s) ds‖2

L2

+
1

2η2
(f ′max)

2‖u(t)‖2
L2 .

(10)

Let η be defined by η2 = α + ρ/2. Us-
ing the Poincaré-Friedrichs inequality

‖u(t)‖2
L2 ≤ (b− a)2‖∂u

∂x
(t)‖2

L2 in (10) we
obtain the differential inequality

d

dt

(
ρ‖∂u

∂t
(t)‖2

L2 + (γ − σ)‖∂u

∂x
(t)‖2

L2

+σ‖1
τ

∫ t

0
e−

t−s
τ

∂u

∂x
(s) ds +

∂u

∂x
(t)‖2

L2

≤ max
{

1,
1

γ − σ

(2σ

τ
+

(f ′max)
2(b− a)2

ρ + 2α

)}

(
ρ‖∂u

∂t
(t)‖2

L2 + (γ − σ)‖∂u

∂x
(t)‖2

L2

)

−σ

τ
‖1
τ

∫ t

0
e−

t−s
τ

∂u

∂x
(s) ds‖2

L2

(11)
which allows to conclude inequality (6).

Following the proof of Theorem 1 it can be
shown the following stability result:

Theorem 2 Let u and ũ be solutions of (1), (3)
with initial conditions u0, u1 and ũ0, ũ1 respec-
tively. Under the conditions of Theorem 1, for
v = u− ũ holds the following

ρ‖∂v

∂t
(t)‖2

L2 + (γ − σ)‖∂v

∂x
(t)‖2

L2

+σ‖1
τ

∫ t

0
e−

t−s
τ

∂v

∂x
(s) ds +

∂v

∂x
(t)‖2

L2

≤ e
max


1, 1

γ−σ

(
2
τ
+

(f ′max)2(b−a)2

ρ+2α

)ff
t(

ρ‖u1 − ũ1‖2
L2

+(γ − σ)‖u′0 − ũ′0‖2
L2

)

(12)

From Theorem 2 we conclude the stability of
the model with respect to perturbations of the
initial velocity and displacement gradient.

3 A numerical method

Let us consider in [a, b] a grid Ih = {xj , j =
0, . . . , N} with x0 = a, xN = b and xj−xj−1 = h.
In [0, T ] we consider the grid {tn, n = 0, . . . , M}
with t0 = 0, tM = T and tn+1 − tn = ∆t.

We discretize the second partial derivative
with respect to x in (1) using the second-order
centered finite-difference operator D2,x defined
by

D2,xvn
h(xi) =

vn
h(xi+1)− 2vn

h(xi) + vn
h(xi−1)

h2
.

By D2,t we represent the second-order finite dif-
ference operator with respect to time levels,

D2,tv
n
h(xi) =

vn+1
h (xi)− 2vn

h(xi) + vn−1
h (xi)

∆t2
.

In the stability and convergence analysis of the
numerical methods studied in this paper we con-
sider a discrete version of the L2 norm that we
present in what follows.

We denote by L2(Ih) the space of grid func-
tions vh defined in Ih such that vh(x0) =
vh(xN ) = 0. In L2(Ih) we consider the discrete
inner product

(vh, wh)h = h
N−1∑

i=1

vh(xi)wh(xi), vh, wh ∈ L2(Ih),

(13)
and by ‖.‖L2(Ih) we denote the norm induced by
the above inner product. For grid functions wh

and vh defined in Ih we introduce the notations

(vh, wh)h,+ = h

N∑

i=1

vh(xi)wh(xi)

‖wh‖L2(I+
h ) =

(
h

N∑

i=1

w2
h(xi)

)1/2

.

Discretizing the spatial derivatives using D2,x

and D2,t and the memory term using a rectangu-
lar rule, we obtain a fully discrete approximation
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un
h defined by

ρD2,tu
n
h(xi) + αD−tu

n+1
h (xi) = γD2,xun+1

h (xi)

+
σ

τ
∆t

n+1∑

j=1

e−
tn+1−t`

τ D2,xuj
h(xi)

+f(xi, tn+1, u
n+1
h (xi)),

i = 1, . . . , N − 1, n = 1, . . . , M − 1,
(14)

where

uj
h(x0) = ua(tj), uj

h(xN ) = ub(tj),
j = 1, . . . , M − 1,

u1
h(xi) = u0(xi) + ∆tu1(xi),

u0
h(xi) = u0(xi), i = 1, . . . , N − 1.

(15)

In what follows we establish for the numerical
approximation defined by (14)-(15), a discrete
version of Theorem 1 which allows to study the
behavior of the discrete L2 norm of the numerical
gradients in time and space as well as the past
in time of the numerical gradient in space. From
this result we also conclude the stability of the
method (14)-(15).

Theorem 3 Let uj
h be defined by (14)-(15) with

ua(t) = ub(t) = 0, t > 0. Then

ρ‖D−tu
n+1
h ‖2

L2(Ih) + ‖D−xun+1
h ‖2

L2(I+
h )

+σ‖∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h + D−xun+1

h ‖2
L2(I+

h )

≤ Sn
p

((
2 + σ

(
(
∆t

τ
)2 + 1

))‖D−xu0‖2
L2(I+

h )

+∆t
(
1 + σ

(
(
∆t

τ
)2 + 1

))‖D−xu1‖2
L2(I+

h )

+‖u1‖2
L2(Ih)

)

(16)
with

Sp =
maxσ,γ,τ

1−∆tf
′2
max−2α

ρ

, (17)

max
σ,γ,τ

= max{1, γ + σ
(
3e−

∆t
τ +

∆t

τ

+2e−2∆t
τ (1 +

∆t

τ
)
)
, σ

(
e−

∆t
τ + 2e−2∆t

τ (1 +
∆t

τ
)
)
}

for ∆t such that

∆t ≤ τ

2σ

(τf
′2
max

ρ
− 2σ − τ(b− a)2 − 2ατ

ρ

+
((τf

′2
max

ρ
− 2σ − τ(b− a)2 − 2ατ

ρ

)2

+4σ(γ − σ − 1)
)1/2)

(18)
and

1−∆t
f
′2
max − 2α

ρ
> 0 (19)

provided that

τf
′2
max

ρ
− 2σ − τ(b− a)2 − 2ατ

ρ

+
((τf

′2
max

ρ
− 2σ − τ(b− a)2 − 2ατ

ρ

)2

+4σ(γ − σ − 1)
)1/2

> 0

(20)

holds.

Proof: Multiplying each member of (14) by
D−tu

n+1
h with respect to the inner product (., .)h

and using summation by parts we obtain

ρ(D2,tu
n
h, D−tu

n+1
h )h + α‖D−tu

n+1
h ‖2

L2(Ih)

= γ(D2,xun+1
h , D−tu

n+1
h )h + (fh(un+1

h ), D−tu
n+1
h )h

−σ(
∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h, D−xD−tu

n+1
h )h,+ ,

(21)
where fh(un+1)(xj) = f(xj , tn+1, u

n+1
h (xj)).

We have

(D2,tu
n
h, D−tu

n+1
h )h

≥
‖D−tu

n+1
h ‖2

L2(Ih) − ‖D−tu
n
h‖2

L2(Ih)

2∆t
,

(22)

(D2,xun+1
h , D−tu

n+1
h )h

≤
‖D−xun

h‖2
L2(I+

h )
− ‖D−xun+1

h ‖2
L2(I+

h )

2∆t
.

(23)

Attending that f(x, t, 0) = 0 we also have

(fh(un+1
h ), D−tu

n+1
h )h

≤ f
′2
max

2
‖D−tu

n+1
h ‖2

L2(Ih) +
1
2
‖un+1

h ‖2
L2(Ih),

≤ f
′2
max

2
‖D−tu

n+1
h ‖2

L2(Ih) +
(b− a)2

2
‖D−xun+1

h ‖2
L2(I+

h )
.

(24)

4

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         426



Using (22)-(24) in (21) we obtain

(ρ

2
+ ∆t(α− f

′2
max

2
)
)‖D−tu

n+1
h ‖2

L2(Ih)

+
(γ

2
− ∆t(b− a)2

2

)
‖D−xun+1

h ‖2
L2(I+

h )

≤ ρ

2
‖D−tu

n
h‖2

L2(Ih) +
γ

2
‖D−xun

h‖2
L2(I+

h )

−σ(
∆t2

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h, D−xD−tu

n+1
h )h,+ .

(25)
It can be shown that

(
∆t2

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h, D−xD−tu

n+1
h )h,+

can be estimated as follows

−(
∆t2

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h, D−tD−xun+1

h )h,+

≤ −1
2
‖∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h + D−xun+1

h ‖2
L2(I+

h )

+p1‖∆t

τ

n∑

j=1

e−
tn−tj

τ D−xuj
h + D−xun

h‖2
L2(I+

h )

+p2‖D−xun
h‖2

L2(I+
h )

+p3‖D−xun+1
h ‖2

L2(I+
h )

(26)
with

p1 =
e−

∆t
τ

2
+ e−2∆t

τ (1 +
∆t

τ
), (27)

p2 =
1
2
(3e−

∆t
τ +

∆t

τ
) + e−2∆t

τ (1 +
∆t

τ
) (28)

and

p3 =
1
2

(
1 + 2

∆t

τ
+ (

∆t

τ
)2

)
. (29)

Then, considering (26) in (25) we deduce

(1−∆t(
f
′2
max − 2α

ρ
)ρ‖D−tu

n+1
h ‖2

L2(I+
h )

+
(
γ − 2σp1 −∆t(b− a)2

)
‖D−xun+1

h ‖2
L2(I+

h )

+σ‖∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h + D−xun+1

h ‖2
L2(I+

h )

≤ ρ‖D−tu
n
h‖2

L2(I+
h )

+
(
γ + 2σp2

)
‖D−xun

h‖2
L2(I+

h )

+2σp3‖∆t

τ

n∑

j=1

e−
tn−tj

τ D−xuj
h + D−xun

h‖2
L2(I+

h )

(30)
Let γ, σ, τ and f such that (20) holds. Then, for
∆t satisfying (18) and (19), from (30) we estab-
lish

ρ‖D−tu
n+1
h ‖2

L2(I+
h )

+ ‖D−xun+1
h ‖2

L2(I+
h )

+σ‖∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h + D−xun+1

h ‖2
L2(I+

h )

≤ Sp

(
ρ‖D−tu

n
h‖2

L2(I+
h )

+ ‖D−xun
h‖2

L2(I+
h )

+σ‖∆t

τ

n∑

j=1

e−
tn−tj

τ D−xuj
h + D−xun

h‖2
L2(I+

h )

)

(31)

Using inequality (31) and attending that
u1

h(xj) = u0(xj) + ∆tu1(xj) we conclude the
proof of (16).

As a corollary of Theorem 3 we conclude the
following result.

Corollary 1 Let uj
h be defined by (14)-(15) with

ua(t) = ub(t) = 0, t > 0. Under the assumption
of Theorem 3, if

max
σ,γ,τ

≤ 1 + C∆t, (32)

then exists a positive time and space independent

5
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constant C such that

ρ‖D−tu
n+1
h ‖2

L2(Ih) + ‖D−xun+1
h ‖2

L2(I+
h )

+σ‖∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h + D−xun+1

h ‖2
L2(I+

h )

≤ C
((

2 + σ
(
(
∆t

τ
)2 + 1

))‖D−xu0‖2
L2(I+

h )

+∆t
(
1 + σ

(
(
∆t

τ
)2 + 1

))‖D−xu1‖2
L2(I+

h )

+‖u1‖2
L2(Ih)

)

(33)

Let en+1
h be the global error defined by

en+1
h (xj) = un+1

h (xj) − u(xj , tn+1). It can be
shown that the global error satisfies the following

ρD2,te
n
h(xi) + αD−te

n+1
h (xi) = γD2,xen+1

h (xi)

+
σ

τ
∆t

n+1∑

j=1

e−
tn+1−t`

τ D2,xej
h(xi)

+f(xi, tn+1, u
n+1
h (xi))− f(xi, tn+1, u(xi, tn+1))

+Tn+1
h (xi)

i = 1, . . . , N − 1, n = 1, . . . , M − 1,
(34)

and

ej
h(x0) = ej

h(xN ) = 0, j = 1, . . . , M − 1,

e1
h(xi) = ∆tT 1(xi),

e0
h(xi) = 0, i = 1, . . . , N − 1,

(35)
where T j

h(xi) represents the truncation error at
time level tj in xi.

Following the proof of Theorem 3, it can be
shown that

ρ‖D−te
n+1
h ‖2

L2(Ih) + ‖D−xen+1
h ‖2

L2(I+
h )

+σ‖∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xej
h + D−xen+1

h ‖2
L2(I+

h )

≤ Sn+1
p

(
(1 + σ((

∆t

τ
)2 + 1))‖D−xT 1

h‖2
L2(I+

h )

+ρ‖T 1
h‖2

L2(Ih)

)
+

∆t

maxσ,γ,τ

n∑

j=1

Sn+1−j
p ‖T j+1

h ‖2
L2(Ih)

(36)
where

Sp =
maxσ,γ,τ

1−∆tf ′2max+1−2α
ρ

, (37)

for ∆t such that

∆t ≤ τ

2σ

(τ(f
′2
max + 1)

ρ
− 2σ − τ(b− a)2 − 2ατ

ρ

+
((τf

′2
max + 1

ρ
− 2σ − τ(b− a)2 − 2ατ

ρ

)2

+4σ(γ − σ − 1)
)1/2)

(38)
and

1−∆t
f
′2
max + 1− 2α

ρ
> 0 (39)

provided that

τ(f
′2
max + 1)

ρ
− 2σ − τ(b− a)2 − 2ατ

ρ

+
((τ(f

′2
max + 1)

ρ
− 2σ − τ(b− a)2 − 2ατ

ρ

)2

+4σ(γ − σ − 1)
)1/2

> 0.

(40)
If (32) and the solution of (1)-(2)-(3) is smooth
enough, from (36), we conclude the following

‖D−te
n+1
h ‖L2(Ih) → 0,

‖D−xen+1
h ‖L2(I+

h ) → 0

and

‖∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xej
h +D−xen+1

h ‖L2(I+
h ) → 0,

when h,∆t → 0.
Conditions (18), (19), (20), for the time step-

size ∆t, allow to conclude the stability of the
finite difference scheme (14)-(15). Those con-
ditions dependent on f

′2
max. We observe that if

this quantity is very small , the upper bound in
(18) can be negative. So, the sufficient condi-
tion - Corollary 1 - does not holds but we can
not conclude the instability of the scheme. In
this case, we should consider the following IMEX
discretization:

ρD2,tu
n
h(xi) + αD−tu

n+1
h (xi) = γD2,xun+1

h (xi)

+
σ

τ
∆t

n+1∑

j=1

e−
tn+1−t`

τ D2,xuj
h(xi) + f(xi, tn+1, u

n
h(xi)),

i = 1, . . . , N − 1, n = 1, . . . , M − 1,
(41)

6
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with the initial and boundary conditions (15).
The stability of the last scheme is established

in the result.

Theorem 4 Let uj
h be defined by (15), (41) with

ua(t) = ub(t) = 0, t > 0. Then holds (16) with

Sp =
maxσ,γ,τ

1−∆t
, (42)

max
σ,γ,τ

= max{1, γ + σ
(
3e−

∆t
τ +

∆t

τ

+2e−2∆t
τ (1 +

∆t

τ
)
)

+ ∆t
f
′2
max

2α + ρ
,

σ
(
e−

∆t
τ + 2e−2∆t

τ (1 + ∆t
τ )

)
}

for ∆t such that

∆t ≤ τ

2σ

(
τ − 2σ +

((
τ − 2σ

)2

+4σ(γ − σ − 1)
)1/2) (43)

provided that

τ − 2σ +
((

τ − 2σ
)2

+4σ(γ − σ − 1)
)1/2

> 0
(44)

holds.

Proof: Attending that

(fh(un
h), D−tu

n+1
h )h

≤ f
′2
max

4η2
‖un

h‖2
L2(Ih) + η2‖D−tu

n+1
h ‖2

L2(Ih)

≤ (b− a)2f
′2
max

4η2
‖D−xun

h‖2
L2(I+

h )

+η2‖D−tu
n+1
h ‖2

L2(Ih) .

Following the proof of Theorem 3 it can be shown

the following

(
ρ + 2∆t(α− η2)

)‖D−tu
n+1
h ‖2

L2(Ih)

+
(
γ − 2σp1

)
‖D−xun+1

h ‖2
L2(I+

h )

+σ‖∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h + D−xun+1

h ‖2
L2(I+

h )

≤ ρ‖D−tu
n
h‖2

L2(Ih) +
(
γ + 2σp2

+
(b− a)2f

′2
max

2η2

)
‖D−xun

h‖2
L2(I+

h )

+2σp3‖∆t

τ

n∑

j=1

e−
tn−tj

τ D−xuj
h + D−xun

h‖2
L2(I+

h )

(45)
with p1, p2 and p3 defined by (27), (28) and (29)
respectively.

Then considering η2 = α +
ρ

2
we obtain

ρ‖D−tu
n+1
h ‖2

L2(Ih) +
(
γ − 2σp1

)
‖D−xun+1

h ‖2
L2(I+

h )

+σ‖∆t

τ

n+1∑

j=1

e−
tn+1−tj

τ D−xuj
h + D−xun+1

h ‖2
L2(I+

h )

≤ ρ‖D−tu
n
h‖2

L2(Ih) +
(
γ + 2σp2

+
(b− a)2f

′2
max

2α + ρ

)
‖D−xun

h‖2
L2(I+

h )

+2σp3‖∆t

τ

n∑

j=1

e−
tn−tj

τ D−xuj
h + D−xun

h‖2
L2(I+

h )

(46)
Finally, inequality (42) is easily obtained from
(46).

For Theorem 4 holds a corollary analogous to
Corollary 1. The convergence of the implicit-
explicit method (41) with initial and bound-
ary conditions (15) can be studied following the
proof of the convergence of method (14)-(15).

4 Numerical Results

The methods studied in Section 3 are rewritten
in a convenient way which makes easier their im-
plementation. Method (14)-(15) is equivalent to

7
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the following four level method

ρD2,tu
n
h(xi) + αD−tu

n+1
h (xi)

−(γ +
σ

τ
∆t)D2,xun+1

h (xi)− f(xi, tn+1, u
n+1
h (xi))

= e−
∆t
τ

(
ρD2,tu

n−1
h (xi) + αD−tu

n
h(xi)

−γD2,xun+1
h (xi)− f(xi, tn, un

h(xi))
)
,

(47)
for i = 1, . . . , N − 1, n = 2, . . . ,M, and (14) for
n = 1.

IMEX method (41) is equivalent to the next
method

ρD2,tu
n
h(xi) + αD−tu

n+1
h (xi)

−(γ +
σ

τ
∆t)D2,xun+1

h (xi)

= e−
∆t
τ

(
ρD2,tu

n−1
h (xi) + αD−tu

n
h(xi)

−γD2,xun+1
h (xi))

)
+ f(xi, tn, un

h(xi))

−e−
∆t
τ f(xi, tn, un−1

h (xi)),

(48)

for i = 1, . . . , N − 1, n = 2, . . . , M. For n = 1 we
consider (41).

As in this paper the external force can be non-
linear in the displacement, a nonlinear system
should be solved when in computation of the
numerical approximation we use method (47).
Otherwise, when method (48) is considered, the
nonlinear system is replaced by a linear one.

The numerical results are obtained for [a, b] =
[0, 1], T = 1, homogeneous boundary conditions,
initial conditions u1 = 0 and

u0(x) =





0, x ∈ [0, 0.35) ∪ (0.65, 1]
1 + 10(x− 0.395), x ∈ [0.35, 0.45)
1, x ∈ [0.45, 0.55]
1− 10(x− 0.65), x ∈ (0.55, 0.65].

We assume that the viscosity is one and the den-
sity ρ = 0.1. We consider σ = γ = 0.01, τ = 1.

In the numerical experiments we take ∆t =
h = 0.01 and we consider different external
forces. The numerical results obtained with
method (41) for f(u) = ue−u are plotted in Fig-
ure 1. The behavior of the displacement when
the external force is given by f(u) = 0.5ueu is
illustrated in Figure 2. Method (41) fails on the
evaluation of numerical approximations for the

external force f(u) = 0.8ueu. In this case, using
the implicit method (14) we obtain the numeri-
cal results plotted in Figure 3.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8
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 t=0.25
 t=0.5
 t=0.75
 t=1

Figure 1: Numerical solutions obtained with
IMEX method and f(u) = ue−u.
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Figure 2: Numerical solutions obtained with
IMEX method and f(u) = 0.5ueu.
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