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Abstract: - in this paper, we present a fuzzy logic controller to combine sliding mode controller and 
PI controller for nonlinear systems with external disturbances. A sliding mode controller can give 
good transient performance and PI offer zero steady state error. However in the sliding mode 
controller, the steady state performance is poor due to the presence of discontinuous control action 
which causes chattering problem. Hence, combining these two controllers by a fuzzy logic can 
combine their advantages and remove their disadvantages. The proposed method can efficiently to 
eliminate the chattering in sliding phase so that high performance can be achieved. Some simulation 
results prove the validity of the proposed method. 
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1 Introduction   
The control of nonlinear systems has been an 
important research topic and many approaches 
have been proposed [1][2].The sliding mode 
control theory of the variable structure system 
provides a method to design a system in such a 
way that the controller system should be 
insensitive to parameter variations and external 
disturbances [3]. Essentially, the sliding mode 
control uses discontinuous control action to 
drive the state trajectory toward a specific 
hyper plane in the state space, and then the 
state trajectory is maintained to slide on the 
specific hyper plane until the origin of the state 
space is reached. In the sliding mode control, 
the hitting time of the system state reaches the 
switching plane will affect the speed of the 
system with the desired dynamic behaviour. 
Sliding mode control (SMC) is well known for 
handling matched uncertainties [3][4].A 
sliding-mode control law is formulated using a 
Lyapunov approach to guarantee that the 
system state first reaches the prescribed sliding 
mode in finite time from any initial state, and 
then remains on it there after by a 
discontinuous control. However, SMC suffers 
from a well known problem chattering due to 
the high gain and high-speed switching 
control. The undesirable chattering may excite 
previously unmodeled system dynamics and 
damage actuators, resulting in unpredictable 

instability. Smoothing techniques such as the 
boundary layer approach have been employed 
to reduce its effects at the cost of giving 
concessions from performance [5]. Therefore, 
a compromise must be sought between the 
desired control accuracy and controller 
bandwidth. As a model free design method, 
fuzzy systems have been as a model free 
design method [7], fuzzy systems have been 
successfully applied to control complex or ill-
defined processes whose mathematical models 
are difficult to obtain [6][7].The ability of 
converting linguistic descriptions into 
automatic control strategy makes it a practical 
and promising alternative to the classical 
control scheme for achieving control of 
complex nonlinear systems. To eliminate 
steady-state error, a PI controller should be 
employed. This paper proposes a fuzzy logic 
controller (FLC) to combine an SMC and a PI 
controller. As the SMC and PI controllers can 
give good transient and steady-state 
performance respectively, the role of the FLC 
is to schedule them under different operation 
conditions [7][8]. The remaining of this paper 
is organised as follow. In section 2, problem 
statements. The proposed fuzzy SMC and PI 
control will be developed in Section 3. Section 
4, a plant is used to test the proposed FLC 
method and some compared results 
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demonstrate its feasibility. Finally, Section 5 
concludes the paper. 
 
 
2 Problem statements 
In this section, the variable structure system 
with sliding mode control is briefly reviewed.  

Consider a general class of SISO n-th order 
nonlinear systems as follow: 

)(),(),()( tdutxgtxfx n ++=             (1) 
xy =  

where f  and g  are nonlinear functions, 

[ ] [ ] nT
n
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the state vector of the systems which is 
assumed to be available for measurement, 

RyRu ∈∈ , are the input and the output of 
the system, respectively, and )(td  is the 
unknown external disturbance. We have to 
make an assumption that )(td  have upper 
bound D , that is, Dtd ≤)( . We require the 
system (1), to be controllable, the input gain 

0),( ≠txg  is necessary. Hence, without loss of 
generality, we are assumed 0),( ftxg .The 
control problem is to obtain the state x  for 
tracking a desired state dx  in the presence of 

model uncertainties and external disturbance 
with the tracking error: 
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Define a sliding surface in the space of the 
error state as: 
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Where [ ]Tncccc 1,,,, 121 −= K  are the 
coefficients of the Hurwitz 
polynomial 1
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i.e., all the roots are in the open left half-plane 
and z  are a Laplace operator. If the initial 
condition 0)0( =e , the tracking problem 

dxx =   can be considered as the state error 

vector remaining on the sliding surface 0=σ  
for all  0ft  . 
A sufficient condition to achieve this 
behaviour is to select the control strategy such 
that. 

0,)(
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The system is controlled in such a way that the 
state always moves towards the sliding surface 

and hits it. The sign of the control value must 
change at the intersection between the state 
trajectory and sliding surface. 
Consider the control problem of nonlinear 
systems (1), if ),( txf and ),( txg , are known. 
The SMC input  u  . 
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Where              
Let the Lyapunov function candidate defined 

as : 2
1 2

1σ=V    (6) 

Differentiating (6) with respect to time, 

1V& along the system trajectory as 
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Hence the SMC input u  guarantees the sliding 
condition of (4). It is obvious that in order to 
satisfy the sliding condition, a hitting control 
term swu  must be added i.e. sweq uuu −= . 
Where 
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)sgn(.),( 1 sktxgu dsw
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(9) 
 The result in the control law (5) for a 
nonlinear plant, the switching-type control 
term swu  will cause chattering problem. To 
solve these problems, we propose the fuzzy 
sliding mode control algorithm using the fuzzy 
logic system and the PI control law in section 
3. 
 
 
3 Design fuzzy sliding mode PI 
control 
A SMC and a PI controller are combined into a 
single FLC to control a nonlinear system (1). 

We employ PI control term in order to avoid 
chattering problem. The input and output of the 
continuous time PI controller is in the form of: 
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∫+= dtkku ipPI σσ  

(10) 
We define a state δ which will be used on 
analysing the system with the PI controller as: 





 = ∫

inactive is controller PI hen theconstant w is
 active is controller PI when thedt

δ
σδ

(11) 
rδ is the reference value of δ . It is constant to 

cancel out the effect of the unknown 
disturbance d when the sliding plane is hit. 
Hence we have 

i
r k

d
=δ                      (12) 

Where ik is a gain to be designed later.  In 
practice, due to integral action as given by 
(11), the state δ will automatically become rδ  
under proper designer of the controller when 
the sliding plane is hit. The maximum bound 

rbδ  can be evaluated as: 

i
rb k

d )max(
=δ             (13) 

With 0frbδ . To carry out the stability 
analysis, we choose an upper bound for  δ : 

rbδδ 10p              (14) 
The state error is defined as follows:  

δδδ −= rbe                (15) 
Then from (11). 
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Fig.1 Membership functions 

 
A SMC and a PI controller are combined into 
FLC, and then the fuzzy rules are givens as: 
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Rule2: if σ  is LR then 
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Where SM and LR are membership functions 
as shown in figure.1. dpi kkk  and, are gains 
to be designed. 
 
 
3.1 PI sub-system analysis 
From Rule 1, (1) and (18) we have  
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Hence, from (15), 
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We can define a symmetric positive definite 
matrix Q , if the real part of eigenvalues of A . 
Hence we can be found a symmetric positive 
definite matrix P , satisfying the following 
equation: 

QPAPA T −=+ (23) 
Also from (23), we have define a common 
Lyapunov function V such that  
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Obviously from (23)   and   (24),  0≤V&   such 
that this PI sub-system is stable. 
 
 
3.2   SMC sub-system analysis 
With reference to Fig.1, the are two sub-region 
defined by 2σσ ≥ and 21 σσσ ≤≤ .From 
(24), we have 

σσσσ δδδδ &&&&&
4221 PePePeePV +++= (25) 

To ensure the system stability of SMC sub-
system under the lyapunov function of (24) 
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that 0≤V&  in this sub-system, we divide 
study in two sub-regions. 
Case1: 2σσ ≥  
From (16), 0=δe& . Then (25) can be reduced 
to  

σσσδ &&&
42 PePV += (26) 

It can be proved that 0≤V&  if 
pi kkkd and, satisfied the following three 

conditions: 
rbid kk δf (27) 

rbδσ 112 f (28) 

42 PP p     (29) 
Proof 1: 
Form Rule 2, (1) and (3), we have 
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)max(dkkd rbi =δf  

Hence  0p&σσ  (31) 
Also, since  2σσ ≥ . From (28) and (17),  

then   δσ ef . 
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Case2: 21 σσσ ≤≤  
From (16), σδ −=e&  .then (25) becomes 
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To ensure (32), is can be negative if the 
following conditions 
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Proof 2: 
From 21 σσσ ≤≤ , σδ −=e& .then (25) 
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which gives condition (34). In conclusion, 
conditions (33) and (34) ensure that 0≤V& . 
Theorem 1: 
For the dynamic model of (1), if the fuzzy 
control law is chosen as (18) and (19), and we 
firstly need to select Qkpki ,,  to satisfy (23) 
and the parameters 21  and , σσkd are chosen as 
in (27), (28) and (34). Then, both SMC and PI 
sub-system control system is stable in the 
sense lyapunov approach. The convergence of 
the tracking error which can still guarantee and 
the chattering problem of control is eliminated. 
 
 
4 Simulations example 
Consider a nonlinear system of the form [9] as 
follows: 
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The control objective is to regulate y  
to ry with )10sin(2)( 2 tty r

−= .consider the 
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fuzzy control law as described in (18) and (19). 
Let .5,2 == kpki ,  









−

−
=

4000
02

 and Q  from (23) we 

have 4.851=P , 12 −=P  and 2.404 =P .                                                       
1.0)(max =d .  (35) 

Also from (18) and (35), 05.0=rbδ . Besides, 
let rbδσ 116.02 f= which satisfies (28). Then 
from (33) and (34), 567.2=kd and 

0284.01 =σ . .0)1(;1)1( 21 == xx  
From Fig.5, it can be seen that the one using 
fuzzy sliding mode PI controller overcomes the 
chattering problem of control and is 
eliminated. However, as shown in Fig.3, 
chattering exists of traditional SMC. 
In Fig.4, the stability convergence and 
robustness. Hence, the high performance can 
be is achieved.  

 

 
       Fig.4   the behaviour of )(ty  and  )(tyr  with fuzzy                 

SM and PI control 
 

 
                    Fig.5   Fuzzy SM and PI control signal 

Fig.2   The behaviour of  )(ty  and  )(tyr  with traditional 
SMC 

           Fig.3   Sliding mode control signal 
 
 

 
 
5 Conclusion 
This paper proposes an approach to combine a 
sliding mode and PI controller using a fuzzy 
logic for nonlinear systems with external 
disturbance. When, only, the sliding mode 
technique is used the chattering exists due to  
the presence of discontinuous control action. 
The proposed fuzzy logic control law 
overcomes the chattering problem and high 
performance can be achieved. The controller 
does not need the accurate system 
mathematical model, so it is relatively easy to 
design. The simulation results verify the 
validity of the proposed fuzzy logic controller. 
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