
Towards a Formal Model for the Network Alarm Correlation Problem

Jacques-H. Bellec, M-Tahar Kechadi
School of Computer Science & Informatics,

University College Dublin, Belfield, Dublin 4, Ireland.
Jacques.Bellec@ucd.ie, Tahar.Kechadi@ucd.ie

Abstract

In telecommunication networks, alarms are usually
useful for identifying faults, and therefore solving them.
However, for large systems the number of alarms pro-
duced is so large that the current management systems
are overloaded. One way of overcoming this problem
is to filter and reduce the number of alarms before
the faults can be located. In this paper, we describe
a new approach for fault recognition and classification
in large telecommunication networks. We introduce a
new model and present another way of understanding
the alarm correlation problem.

1 Introduction

Telecommunication networks are growing in size and
complexity, and therefore their management is becom-
ing more complicated. Each network element can pro-
duce a large amount of alarms when a fault is detected.
The telecommunication network management system
is in charge of the recording of the alarms generated
by the nodes in the network and presents them to the
operator. However, due to the high volume and the
fragmented nature of the information, it is impossible
to quickly solve the faults. Moreover, somes changes
in the network such as new equipments, updated soft-
ware, and network load, mean that the alarms can be
very different in nature [1]. More precisely, when a
fault occurs, devices or components can send messages
to describe the problem that has been detected, but
they only have a local view of the error. Due to the
complex nature of these networks, a single fault may
produce a cascade of alarms from the affected network
elements. In addition, a fault can trigger other faults,
for instance in the case of overloading. Even though
failures in large communication networks are unavoid-
able, quick detection, identification of causes, and res-
olution of failures can make systems more robust, more

reliable, and ultimately increase the level of confidence
in the services that they provide [2].

Alarm correlation is a key functionality of a net-
work management system that is used to determine
the faults’ origin, and to filter out redundant and spu-
rious events. The alarm correlation systems generally
combine causal and temporal correlation models with
the network topology. The power and robustness of
the models used and the algorithms developed vary
from system to system. However, due to the absence
of any simple, uniform, and precise presentation of the
alarm-correlation problem, it is very difficult to com-
pare their relative power, or even to analyze them for
their properties. In general, data mining techniques
are adapted towards the analysis of collections of data,
as they can find the redundant data sequences. Gen-
erally, to analyse such a sequence, the most frequent
episodes of data must be found. Unfortunately the do-
main of telecommunication networks has a particular
behaviour compared to other data sets [3, 4], so most of
the data mining techniques can not directly be applied
to the alarm correlation problem

In this paper we focus on the Behavioural Proxim-
ity model (BP). Its main objective is to reduce con-
siderably the number of alarms by clustering them ac-
cording to their behaviour, to form events. Then these
events are correlated to form clusters via the Event Du-
ration Matching (EDM) algorithm. As a result, only
importantl seeds of global events are presented to the
network operator, helping him in identifying and solv-
ing the faults in the network. Our model incorporates
a fuzzy core, which provides fuzzy results, namely re-
sults with a degree of trust. Due to a limited space,
we will not give details of the different algorithms but
only focus on the theorical model.

The paper is organised as follows: in the next sec-
tion, we describe the work which has already been done
in this domain. Then in section 3, we describe our
model by defining each notion introduced in our ap-
proach. Finally, we conclude in section 4.
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2 Background

In the past, network fault management were per-
formed by human experts. The size and complexity
of today’s networks, however, have made the levels of
human intervention required to perform this function
prohibitively high. Currently, many systems employ
event correlation engines to address this issue [5, 6].
The problem of an automatic identification of corre-
lated events has been tackled from various perspectives.
Model traversal approaches aim to represent the inter-
relations between the components of the network, [7] or
the causal relations between the possible events in the
network [8], or a combination of the two [9]. Rule-based
[10] and code-based [11] systems also model the rela-
tions between the events in the system, specifying the
correlations according to a rule-set or codebook. Other
techniques, such as neural networks [12, 13] or decision
trees, have also been applied to this task. These ap-
proaches vary in the level of expert knowledge required
to train the system. Neural networks, for example,
can require no expert input whereas model-based tech-
niques may be fully reliant on the insights of human
experts. The domain of sequential data mining ad-
dresses the specific problem of identifying relationships
or correlations between events in a raw dataset, which
is inherently sequential in nature, such as fault data
consisting of a series of time stamped events. Mining
sequential patterns can be viewed as a subset of the
problem of mining associations between dataset ele-
ments in general, constrained by the temporal aspects
of the data. But to deal with this, the temporal as-
pect is not the only factor that we have to consider. In
fact, the particular nature of telecommunication net-
works gives some strong relationships between alarms
behaviour that we cannot find in other kind of data
sets.

In the field of telecommunication networks, related
work done in [2] used association rules and frequent
episodes to discover alarm patterns, which were subse-
quently used in the development of alarm correlation
systems. However, the methods used in this research do
neither capture the notion of alarm similarity, nor the
incertitude related to the network. Futhermore, asso-
ciation rules and frequent episodes have the drawback
of generating many uninteresting and redundant alarm
patterns [14]. In the next sections, we will present our
formalism which overcomes these drawbacks.

3 The Behavioural Proximity Model

This section presents the formal model of our Alarm
correlation technique. Fault localization is a process of

isolating faults responsible for the observable malfunc-
tioning of the system. This can be done by trying to
find some correlation between alarms. Given a set of
alarms (dataset), the problem is to present to the op-
erator only a small number of alarms that are highly
considered to be the cause of root faults. Before pre-
senting the technique in section 4, we need to define
some key notions of the model.

• Definition 1. A fault is a disorder occurring
in the hardware or software of the network [15].
Faults happen within the network components,
and alarms are external manifestations of faults.
Faults can be classified into four categories : hard-
ware, software, telecommunication, and environ-
ment. We call FS the total set of faults which can
occur in a network, and Fi a particular fault de-
fined as Fi =< Sw, Sp, Ss > .i ∈ [1, n], where Sw is
the set of alarms gathered in an event warning, be-
fore the fault appears, Sp is the set of alarms which
can be viewed as the primary symptoms, and Ss

the secondary symptoms. Off course, theses sets
can be empty or composed by just one alarm, but
they are finite and disjoint:

Sp ∩ Sw = ∅, Sp ∩ Ss = ∅, Sw ∩ Ss = ∅. (1)

The faults behaviour can be caracterized by three
states according to the faults duration time, as
permanent, intermittent or transient. Permanent
faults exist until some repair actions are taken.
Intermittent faults occur on a discontinuous or
periodic basis, causing degradation of service
for short periods of time. Transient faults can
cause a temporary and minor degradation of a
service. They can be easily identified and repaired.

• Definition 2. An Error is the result of a fault.
It can be identified by the difference between an
observed, or measured value and a theoretically
correct value or condition . Many errors may
be generated by just a single fault. Some errors
may result in a deviation of a delivered service
from the specified service or component that is
visible to the outside world. The term failure is
used to denote this type of visible error. Some
errors are not visible externally. Thus, errors may
propagate within the network causing failures
in other hardware or software components. In
order to correct an error, its corresponding fault
has to be resolved; therefore, errors are typically
not handled directly. We can try to approximate
an error by identifying the event, namely the
bunch of alarms which have been sent to notify
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the presence of the error. To resume, we can
write that the Faults Fi can lead to some errors
Errj visible under the form of alarm events ek.
Fi ⇒

∑n
j=1 Errj ⇒

∑n
k=1 ek.

• Definition 3. A Symptom is an external man-
ifestation of failures. Symptoms are observed as
alarms notifications of a potential failure. These
notifications may originate from management sys-
tems which monitor the network status or from
probes widespread around the network. Some
faults may be directly observable, i.e., they are
problems and symptoms at the same time. How-
ever, many types of faults are unobservable due
to (1) their intrinsically unobservable nature, (2)
local corrective mechanisms built into the manage-
ment system that destroy evidence of fault occur-
rence, or (3) the lack of management functionality
necessary to provide indications of fault existence.
Examples of intrinsically unobservable faults in-
clude livelocks and deadlocks. Some faults may
be partially observable the management system
provides indications of fault occurrence, but the
indications are not sufficient to precisely locate the
fault.

In a communications network, a single fault may
cause a number of alarms to be delivered to the
network management center. Multiple alarms
may be a result of (1) fault re-occurrence, (2)
multiple invocations of a service provided by
a faulty component, (3) generation of multiple
alarms by a device for a single fault, (4) detection
and notification about the same network fault
by many objects (hardware or software network
components) simultaneously, and (5) error propa-
gation to other network objects causing them to
fail and generate additional alarms.

• Definition 4. An alarm consists of a notifi-
cation of the occurrence of a specific event, which
may or not represent an error. An alarm report is
a kind of event report used in the transportation of
alarm information. Alarms defined by vendors and
generated by network equipment are messages ob-
servable by network operators, giving information
about particular behaviours of the system. There
may be many alarms generated for a single event.
All the alarms are logged into a centralized man-
agement system, in text format files. According
to the information architecture in telecommunica-
tion networks, an alarm can be thought of as an
object. The attributes of the alarm try to describe

the event that triggered it. This is a possible set
of alarm attributes:

– Event timestamp: gives the time the alarm
was issued

– Logged time: gives the time the alarm was
recorded

– Perceived severity: gives a state ranging from
critical to indeterminate

– Alarm ID: identifies the alarm by a unique
serial number

– Alarm Key: it is the key composed by all
alarm attributes but the ones related to the
time

– Node ID: identifies the node in the subnet-
work

– Event Type: gives some indications of the
nature of what happened

– Probable Cause: gives some indication of why
it happened

– Specific Problem: clarifies what happened

We call A the set of all possible alarms and ak

the kth alarm in the dataset. Each alarm can be
defined by a set of static parameters noted λ(ai)
and by a set of parameters related to the time
noted δ(ai). In other words, ai = λ(ai) + δ(ai).
We define identical alarms if they have the same
static content with different timestamps and
logged times. Namely, ai is identical to ai′ only
if λ(ai)is equals to λ(ai′). From a raw data set,
we can gather the alarms with the same static
attributes, and calculate the exact number of
different kinds of alarms.

• Definition 5. We can caracterize the behav-
iour of an alarm ai, firstly according to its re-
dundancy, then to its periodic nature. If we can
retreive one or multiple occurences of this partic-
ular alarm, then we can try to detect if there is a
constant periode between them. And if it is the
case, we can affirm that these set is composed by
Periodic alarms. We call Single alarms the
alarms that are unique, i.e we cannot find a sim-
ilar alarm in the laspe time considered. We call
Twin alarms the alarms that appear only twice.
With only two alarms we cannot determine a peri-
odic behaviour. When a set of alarms is not peri-
odic, namely we cannot determine a specific period
among them, we call them Aperiodic alarms.
The choice between a periodic and aperiodic is not
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an easy one because of some delayed alarms, miss-
ing alarms and overlapped events, that can give
a wrong standard deviation and so, give a wrong
caracterization of the behaviour. We created an al-
gorithm to answer to these needs, nammed ABR,
which uses fuzzy logic to determine the nature of
the behaviour of each family of alarm. Its main
advantage is that it can pinpoint with accuraccy
the behaviour via giving a degree of trust to differ-
ent caracterizations. The fuzzy formalism of ABR
is the following:

– Let A be a set of alarms noted as ai. Thus,
A =

∑n
i=1 ai.

– Let ei be a fuzzy set in A, characterized by
a membership function ψek(ai) which maps
each point in A onto the real interval [0, 1].

– ek ∈ ∅ ⇐⇒ ∀ai, ψek(ai) = 0.0.

– ej = ek ⇐⇒ ∀ai : ψej(ai) =
ψek(ai)[or, ψej = ψek].

– ψe′k = 1− ψek.

– ej ⊂ ek ⇐⇒ ψej ≤ ψek.

– el = ej ∪ ek, where: ψel(ai) =
MAX(ψej(ai), ψek(ai)).

– el = ej ∩ ek where: ψel(ai) =
MIN(ψej(ai), ψek(ai)).

• Definition 6. A event is a set of correlated
alarms. Let E be the set of all possible sets of
events and ei an event of E. The event recognition
is the first part of the recognition process in the
BP model. The Alarm Behavioural Recognition
(ABR) algorithm takes care of the event recogni-
tion and gives in output the sets representing all
kind of different alarms we can find in the data.

The membership function for each event ei is
called ψei(ak), ∀ak we have ψei(ak) ∈ [0, 1]. The
first correlation rule is based on the static at-
tributes of the alarms, and gives a crips set:

– If λ(aj) = λ(ak), then aj ∈ ei and ak ∈ ei,
then ψei(ak) = ψei(aj) = 1.

We developped a new event correlation algorithm
called EDM for Event Duration Matching. Its
aims are twofold: it scores the events by impor-
tance and classifies them in three categories, and it
proceeds to the correlation to give in output some
clusters. Here is a possible set of event attributes:

– Event ID : it gives the unique ID of the event

– Start Time: gives the minimum apparition
time of all embedded alarms in the event

– End Time: gives the maximum apparition
time of all embedded alarms in the event

– Score: gives a score calculated according to
the relevance of the attributes of the alarms

– Gravity : it is the average time of apparition
of the alarms

– Event Key: the key composed by all alarm
keys

– Code Type: identifies the nature of the event
( Primary, secondary or tertiary)

– Nb Alarms : number of embedded alarms

The scoring function χ uses the static attributes
defining the nature of the alarm representing the
event. It is completly deterministe, but the classi-
fication which follows, uses fuzzy logic.

χ(ei) = χ(aj) = χ(λ(aj)) (2)

In order to identify the most relevent events,
EDM classifies them in three categories, as Pri-
mary, Secondary and Tertiary. Primary events
are the most important as they can be viewed
as highly probable primary symptoms. Tertiary
events are low interesting because they describe
some telecommunication failures which are the
most common effects in a telecommunication net-
work. Finally, secondary events are somewhat in-
teresting but not enough to be considered in the
first place. As we said, it is not easy to find the
boundaries between each class, a not much better
score does not mean for sure that the event is in
the upper class. To answer to this problem, we
built in EDM with a fuzzy system, to get a result
with a degree of trust and then give different re-
sults according to the network operator’s point of
view. The fuzzy formalism of EDM is the follow-
ing:

– Let ei be an event ∈ E, ck a cluster of events
∈ C, Γ(E) a subset of E containing primaries
events and a minimal bound of degree of trust
α . Thus, E =

∑n
i=1 ei.

– If Ψ(e1, ej) ≤ α, ∀j ∈ [2, n], and e1 ∈
Gamma(E) ⇒ e1 ∈ ck.

– Let ∆(E) a subset of E containing Secon-
daries rated events, and Θ(E) a subset of
E containing Tertiaries rated events. Thus,
Γ(E) ∪∆(E) ∪Θ(E) = E
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– If aj ∈ ei and ak ∈ ei+1 ⇔ λ(aj) 6= λ(ak)
– If aj ∈ ei and ak ∈ ei ⇔ λ(aj) = λ(ak)

– If aj ∈ ei ⇒ ∃ak ∈ ei/λ(aj) = λ(ak)
– Let the membership function of Γ(E) be

ΦΓ(ei) for an event ei ∈ E, ei ∈ Γ(E) ⇔
ΦΓ((ei) ≥ HighBound

– Let the membership function of ∆(E) be
Φ∆(ei) for an eventei ∈ E, ei ∈ ∆(E) ⇔
HighBound ≥ Φ∆(ei) ≥ LowBound

– Let the membership function of Θ(E) be
ΦΘ(ei) for an event ei ∈ E, ei ∈ Θ(E) ⇔
ΦΘ(ei) ≤ HighBound

– |Γ(E)| ≥ |C|

• Definition 7. A cluster is a set of correlated
events. In other words, it is what our technique
produces and presents to the network operator.
The number of clusters is not predefined, but must
be significantly low compared to the number of
raw input alarms. Basically, the number of clus-
ters returned by the BP technique represents more
or less the number of faults that should be solved
by the operator. We call C the set of all possible
cluster ck, as C =

∑n
k=1 ck. A cluster is a final

result according to a degree of trust α preliminary
etablished during the first phase of our technique
by the network operator. The aggreated events
which compose the clusters are said independant
with a certain degree of trust α and with a speci-
fied scope.

This is a possible set of cluster attributes:

– Cluster ID : it gives the unique ID of the
event

– Start Time: gives the minimum apparition
time of all embedded alarms in the event

– End Time : gives the maximum apparition
time of all embedded alarms in the even

– Total Score: gives a total score calculated ac-
cording to the sum of all events scores which
composed the cluster.

– Gravity : it is the average time of apparition
of the alarms

– Event Root: the root event

– List of Events : the list of all events
– Nb Alarms : number of embedded alarms

The clusterisation rule is the following:
Let ei, ej two events inE θck the membership func-
tion of ck.

• if ei ∈ Prim(E) or ej ∈ Prim(E), and θ(ei, ej) ≥
α then ei ∪ ej ∈ ck.

• Definition 8.

We define Inter-correlated events by the fact:
at least one of the correlated events belongs
to the different class of network elements. By
Inter-correlation constraint, we make focus on
discovering multi-level correlation relations among
the differents natures of the components.

• Definition 9.

We define Intra-correlated events by the fact: all
of the events in the correlation rules must belong
to the same class of network element i.e. MS,
BTS or BSC. By Intra-correlation constraint, we
can discover the correlation relations in the same
level of the telecommunication netwok.

• Definition 10.

Scope defines the area of alarms/events occuring
in the network. The correlation process can
be done for a particularly interesting scope for
the network operator. It can be viewed as a
constraint which limits the correlation process to
a certain level of the network hierarchie. it can be
particularly interesting for the network operator,
to get only a close up to a certain scale of the
network, and so have a more accurate view of
what is going on there.

• Problematique

We previously introduced some notions, it is now
time to explain the problem we try to solve ac-
cording to our model. As we said, the main goal
is to present to the operator a small number of
alarms, highly representative of the faults which
appeared in the network. To do so, we have to
find the correlations rules for the alarms. These
rules are most of the time unknown to the op-
erator, who identify the caracteristic sympthoms
of the fault and then, the fault itself, according
to his knowledge about the network, and the his-
tory of fault recovery. When a fault appears, the
different symptoms which follow are a cascade of
errors. Errors are not directly viewable, but if we
retreive good correlation rules we would be able
to identify the events which are the external mag-
nifestation of the errors. And this, according to
a degree of trust, whose limit is specified by the

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         462



user. The first step consists into the identification
of the errors which follow the fault appearance.
As we have just a limited view of what is going
on in the netwok, we can try to approximate the
errors by identifiying the events of alarms. Then a
correlation between these events must be done, to
recognize dependant and independant events and
then present to the operator some plausible sets of
events which can represent the faults with a strong
degree of trust.

4 Conclusion

The main contribution of this paper is the proposi-
tion of a new model for alarm correlation which satis-
fies the network opertor’s needs. It provides the main
roots of faults which appeared in the network in the
form of clusters. This model has been implemented
and is being evaluted with real data sets from a live
3GPP telecommunication network, and as far as we
are, it shows some interesting results. For further im-
provement of our model, we are now integrating some
training skills with the use of neural network reasoning.
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