

TCP Enhancement: Fast Active Queue Management Scalable
Transmission Control Protocol

TABASSAM NAWAZ, MUHAMMAD SALEEM MIAN, HAFIZ ADNAN HABIB

Telecommunication & Information Engineering Department
University of Engineering & Technology

Taxila, Punjab
PAKISTAN

Abstract: - FAST TCP is Fast Active queue management Scalable Transmission Control
Protocol. FAST TCP is an alternative congestion control algorithm in TCP. It is designed for high
speed data transfers over large distance. FAST TCP is assumed to be the “successor” of TCP. Lot
of people already worked on this subject. Their research work and results yield a new dimension
for the entertainment and scientist eras. This research paper is the comprehensive study on FAST
TCP.

Key-Words: - TCP, Fast TCP, Congestion Control, Fast TCP review, token based F-TCP.

1. Introduction:
Computer systems worldwide use TCP/IP
protocols to communicate because TCP/IP
provides the highest degree of
interoperability, and runs over more network
technologies than any other protocol suite.
The robustness of TCP is the main reason
for its large-scale deployment. Besides, TCP
is one of a few transport protocols that have
congestion control mechanisms. With
acknowledgments and time-out based
congestion control mechanism, the
performance of TCP is inherently related to
the bandwidth delay product of the
connection. For a TCP connection,
congestion might occur in those nodes (e.g.,
routers, IP/ATM access nodes) along the
traversing paths, which mostly results in
packet loss [6].
TCP breaks down large files into small
packets of about 1500 bytes, each carrying
the address of the sender and the recipient.
The sending computer transmits a packet,
waits for a signal from the recipient that
acknowledges its safe arrival, and then sends
the next packet. If no receipt comes back,
the sender transmits the same packet at half

the speed of the previous one, and repeats
the process, getting slower each time, until it
succeeds. This means that even minor
glitches on the line can make a connection
very sluggish. Because FAST TCP uses the
same packet sizes as regular TCP, the
hardware that carries messages around the
net will still work. The difference is in
software and hardware on the sending
computer, which continually measures the
time it takes for sent packets to arrive, and
how long acknowledgements take to come
back. This reveals the delays on the line,
giving early warnings of likely packet
losses. The FAST TCP software uses this to
predict the highest data rate the connection
can support without losing data [10].
Dr. Jian Ma originally proposed F-TCP in
NRC, and it has become an ATM Forum
draft. Its basic idea is to avoid congestion in
intermediate nodes by effectively controlling
acknowledgement (ACK) flow, that is, delay
the ACKs to inform the source that the
network will be congested [6].

1.1 Basic principle of the F-TCP
flow control:

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 108

mailto:tabassam@uettaxila.edu.pk
mailto:drmsaleem@uet.edu.pk
mailto:adnan@uettaxila.edu.pk

The present simple FAST TCP (F-TCP)
flow control relates to end-to-end flow
control in packet network where
Transmission Control Protocol (TCP) is
used as transport layer protocol. The most
critical problem today in the Internet is the
long control time of the TCP flow control
which results buffer oscillation, low link
utilization and low throughput. The main
objectives of the F-TCP flow control are to
remedy these problems by early informing
TCP source that the network will be
congested, and to direct the TCP source to
slowdown its output rates. The basic idea of
the scheme is to delay the ACKs being
transferred from the destination towards the
sender. This can be done at the same
network point where congestion has been
detected, or, alternatively, a network point
detecting overload or congestion can direct
another network point to delay the ACKs[1].

1.2 Simple FAST- TCP:
The basic idea of the F-TCP flow control is
to delay the ACKs being transferred from
the destination towards the source to inform
the source that the network will be
congested, and to direct the TCP source to
slowdown its output rates. This can be done
at the same network point where congestion
has been detected or a network point
detecting overload can direct another
network point to delay the ACK. When
detecting overload, F-TCP delays ACK on
the backward path instead of discarding
packets on the forward path to inform the
TCP source [3].

Fig 1: Prototype of Simple FAST TCP[3]

1.3 Comparison of Standard TCP
with FAST TCP:
We will take a look on some properties
comparison between standard TCP and
FAST TCP.
1.3.1 Infrastructure problem
TCP: Does not solve infrastructure problem
FAST: Does not solve infrastructure
problem
1.3.2 To get high throughput
TCP: The efficiency of the (congestion
control algorithm in the) current TCP
implementation drops steadily, and the
protocol eventually becomes a performance
bottleneck itself, as the network
infrastructure scales up in capacity [10].
FAST: FAST TCP aims to remove this
bottleneck: it is scalable to networks with
large bandwidth-delay product [10].
1.3.3 Performance improvement in low
speed networks
TCP: If the bottleneck in the end-to-end
path is the 10Mbps or 100Mbps Ethernet
card, we expect the current TCP
implementation to be quite efficient, so there
is not much to improve [10].
FAST: If the performance of the current
TCP implementation is poor even at such
speeds, then FAST TCP may or may not
provide significant improvement depending
on the reason for the poor performance [10].
1.3.4 High speed networks and wireless
networks.
TCP: The current TCP performs poorly in
two types of networks [10].
FAST: FAST TCP is optimized for the
former and believe it can be tailored to
provide significant benefit in wireless
networks as well [10].

Router Congested

 Delayed ACK
 ACK So

ur
ce

D
es

tin
at

io
n

1.3.5 Delay-based congestion control
TCP: Delay-based congestion control has
been proposed since the late 80s by Jain and
many others, notably Brakmo and Peterson
in TCP Vegas. We believe its advantage
over loss-based approach is small at low
speed, but decisive at high speed [10].
FAST: This does not mean that it is futile
to use delay as a measure of congestion,
but rather, that using a delay-based

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 109

algorithm to predict loss in the hope of
helping a loss-based algorithm adjust its
window is the wrong approach to
address problems at large windows.
Instead, a different approach that fully
exploits delay as a congestion measure,
augmented with loss information, is
needed [10].
1.3.6 Difficulties of the current TCP at
large windows
TCP: Four difficulties contribute to the
poor performance of current TCP
implementation in networks with large
bandwidth-delay product: [10]

• At the packet level, linear increase
by one packet per Round-Trip Time
(RTT) is too slow, and
multiplicative decrease per loss
event is too drastic.

• At the flow level, maintaining large
average congestion windows
requires an extremely small
equilibrium loss probability that is
hard to achieve in practice.

• At the packet level, oscillation is
unavoidable because of the binary
nature of the congestion signal
(packet loss).

• At the flow level, the dynamics is
unstable, leading to severe
oscillations that can only be
reduced by the accurate
estimation of packet loss
probability and a stable design of
the flow dynamics [10].

FAST :

 FAST TCP is equation-based, hence
avoiding packet level oscillation,

 FAST TCP has stable flow
dynamics,

 FAST TCP uses queueing delay,
rather than loss probability, as the
main measure of congestion [10].

1.4 Token based F-TCP:

Fig 1 shows the prototype of F-TCP
exploited in routers. The mechanism of
FTCP could be divided into three parts:
congestion detection, ACK’s identification
and delaying ACKs. A fixed threshold for
the forward buffer occupancy is set, so that
congestion is notified once the buffer
occupancy exceeds the threshold. ACKs
flows are delayed according to the state
(CONGESTION or NON-CONGESTION),
that is, when no congestion occurs, ACKs
leak by a normal rate, otherwise, by a
fraction of the normal rate. We set normal
rate the same as the rate of data packet in the
forward path. The fraction is set to half that
the rate is halved when congestion is
detected. Besides, determining the rate of
Delaying ACKs is also a hazard problem.
For F-TCP, ACKs should be delayed
according to the network traffic conditions,
while traffic in real network changes so
quickly and frequently that it is difficult to
grasp. So a scheme is developed called
token-base F-TCP [6].
 Forward Buffer
 Data

 Backward Buffer

 ACK

Server

Token based
Mechanism

Server

Fig: 2 Token Based FAST TCP
The prototype of the token-based FTCP is
shown in Fig.3. When data packets arrive or
leave and the resource condition changes,
this mechanism collects associated
information and recalculates the number of
tokens. This mechanism has many potential
advantages as following. Since this scheme
is one type of F-TCP, it also possesses the
merits of F-TCP, such as fully avoiding
packet loss, shortening buffer capacity,
smoothening traffic etc. It does not need to
determine the threshold or the rate of

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 110

delaying ACKs. ACKs are constrained
closely related to current network resource
(i.e., spare buffer occupancy) not the
characterization of data traffic. As a result,
this scheme is significantly robust. This
scheme is also very simple and easy to
algorithm. In TCP, delayed ACKs allows
data receivers to refrain from sending ACK
for every incoming data packet. Although
delayed ACKs can reduce the number of
packets sent by the receivers, excessive
delays on ACKs will disturb the round-trip
timing and inherent self-clocking of TCP.

1.5 In ATM Networks:
The essential idea of FAST TCP (F-TCP) is
to delay TCP acknowledgment (ACK)
traveling towards its TCP source through a
node where its forward channel is
congested. It can be seen that: 1. F-TCP
smoothes the peak of the TCP flow,
consequently F-TCP reduce the requirement
of ATM buffer;
2. With the same size of ATM buffer, F-
TCP reduces the probability of overflow and
as a result, improve the TCP throughput;
3. F-TCP reduces ATM buffer oscillation,
since in most time the TCP is in congestion
avoidance phase after short period of slow
start phase, the flow is fairly smooth and the
ATM buffer utilization is improved [1].

2. METHODOLOGY
2.1 WAN in LAB at
netlab.CALTECH.edu
 They have described the development of
FAST TCP, from background theory to
actual implementation and its first
demonstration. Unlike TCP Reno and its
variants, FAST TCP is delay-based. This
allows it to achieve high utilization without
having to fill the buffer and incur large
queuing delay, as loss-based algorithms
often do. It achieves proportional fairness
and does not penalize flows with large
RTTs. Whether FAST TCP can converge
rapidly, yet stably, to a fair allocation in a
dynamic environment where flows of heavy-
tailed sizes join and depart in a random

fashion, and in the presence of current TCP
flows needs a lot more evaluation [9].

ns-2

The congestion control mechanism of TCP
separated into four components in fig 4.
These four components are functionally
independent so that they can be designed
separately and upgraded asynchronously [2].

TCP Protocol Processing

Fig 4: FAST TCP Architecture

Data Window Burstiness
Control Control Control

 Estimation

 They presented experimental results of their
first Linux prototype and compared its
performance with TCP Reno, HSTCP and
STCP. They have evaluated these algorithms
not only in static experiments, but also
dynamic environments where flow comes
and go; not only in terms of end to end
throughput, but also queue behavior in the
network [2].
FAST

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 111

LINUX

Dynamic sharing on Dummynet

• capacity = 800Mbps
• delay=120ms
• 3 flows
• iperf throughput
• Linux 2.4.x (HSTCP: UCL)

HSTCP

STCP

FAST

LINUX

 Dynamic sharing on Dummynet
• capacity = 800Mbps
• delay=120ms
• 14 flows
• iperf throughput
• Linux 2.4.x (HSTCP: UCL)

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

q av
g (p

kt
)

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5
x 10

5

cu
m

ul
at

iv
e

lo
ss

 (p
kt

)

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

th
ro

ug
hp

ut
 (p

kt
/m

s)

sec

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

q
a
v
g
 (

p
k
t)

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5
x 10

5

c
u

m
u

la
ti
v
e

 l
o

s
s
 (

p
k
t)

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

th
ro

u
g

h
p

u
t

(p
k
t/

m
s
)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10
x 10

5

th
ro

ug
hp

ut
 (

K
bp

s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10
x 10

5

th
ro

ug
hp

ut
 (

K
bp

s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10
x 10

5

th
ro

ug
hp

ut
 (

K
bp

s)

sec

Steady throughput

30min

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 112

HSTCP

STCP

Aggregate throughput

Fairness

Stability

2.2 Token Based F-TCP
For the long control loop problems, a
mechanism named FAST-TCP is proposed
to avoid congestion in the intermediate
nodes by effectively controlling ACKs flow
traverse the same node as its forward
packets. The algorithm contains three
parameters: token buffer capacity: BT;
ACKs buffer capacity: B BA; number of
tokens: NT. When data packets arrive or
leave, the resource condition changes, this
mechanism collects the information and
calculate number of tokens. Some temporary
variables are needed: average packet length:
Lp; data packet counts: Pc. The procedure of
its implementation can be depicted with the
pseudo-code:
Initialization: Packet count=0; BT = NT
=Forward buffer capacity/Default packet
length, then,
If a data packet arrives at the forward buffer,
1. Recalculate the average packet length
Lp and BT
packet count = packet count+l ;
Lp=(Lp+input packet length)/packet count
BBT =Forward buffer capacity/ Lp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Stability

TCP Reno
FAST TCP

HighSpeed TCP
Scalable TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800

C
D

F

Throughput (Mbps)

TCP Reno
FAST TCP

HighSpeed TCP
Scalable TCP

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

q av
g (

pk
t)

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5
x 10

5

cu
m

ul
at

iv
e

lo
ss

 (
pk

t)

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

th
ro

ug
hp

ut
 (

pk
t/m

s)

sec

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000
q av

g (
pk

t)

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5
x 10

5

cu
m

ul
at

iv
e

lo
ss

 (
pk

t)

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

th
ro

ug
hp

ut
 (

pk
t/m

s)

sec

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fairness

TCP Reno
FAST TCP

HighSpeed TCP
Scalable TCP

Jain’s index

H
S
T
C
P
~
R

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 113

2. Calculate NT
NT =Spare Forward buffer capacity/Lp
NT = min(BT, NT); End
If a data packet leaves the forward buffer,
- Calculate NT
NT =Spare Forward buffer capacity/ Lp
NT = min(BT, NT); End
If NT >0 an ACK is served,
NT =NT --l; End [4]

2.3 In ATM Networks:
The implementation of F-TCP in the third
layer and add some new statistics in the
ATM switches to monitor the utilization and
occupancy of the ATM buffer. They use a
very simple example to show the
effectiveness of F-TCP. Both the client and
the server in the network use F-TCP. The
client downloads one big file from the
server. The following is some important
parameters of the network [1].
2.3.1 Client and Server
ATM buffer capacity: 500 cells
IP Forwarding Kate: 10,000,000 packet/sec.
TCP Initial RTO (Retransmition Timeout):
0.5 sec.
TCP Maximum ACK Delay: 0.0 sec. (This
parameter is the maximum time the TCP
waits after receiving a segment before
sending an acknowledgment.)
TCP Maximum KTO: 10 sec.
TCP Maximum Segment Size: 536 bytes
TCP Minimum RTO: 0.25 sec.
TCP Receive Buffer Capacity: 2,000,000
bytes
Trigger of Increase of Backward ACK
Delay Time if F-TCP is Enabled: ATM
buffer occupancy is greater than or equal to
472 cells
Increasement of Backward ACK Delay
Time: 7.634E-5 sec [1].
2.3.2 ATM Switches (SW 1 and SW 2)
ATM Buffer Capacity: 1000 cells
ATM Switch Fabric Delay: 0.0 sec [1].
2.3.3 Links
Data Kate: 155,520,000 bit/sec.
Delay: from Client to SW I is 5E-6 sec.,
from SW 1 to SW 2 is 0.12 sec., from SW 2
to Server is 5E-6 sec [1].
2.3.4 Results when F-TCP is enabled

It can be clearly seen that after carefully
setting the trigger condition of delay time
increase for F-TCP and backward ACK
delay time, ATM switch buffer will not
overflow even though the buffer of the ATM
switch is relative small (500 cells). In this
simple example, the overflow of the buffer
of the ATM switch can be completely
avoided. The reason of this conclusion will
be analyzed below. For 536 bytes of the
packet of data from TCP layer, the ATM
switch receives: 536 bytes of data + 20 bytes
of TCP header + 20 bytes of IP header + 8
bytes of LLC header + 8 bytes of AAL5
trailer = 592 bytes. These are padded to
produce 13 ATM cells. Since the receiver
waits no time after receiving a segment
before sending an ACK, each ACK will
acknowledge 536 bytes data in the TCP
layer. And for each ACK received by the
sender, at most twice mount of data will be
sent out. In another words, at most 2* 13 =
26 ATM cells will arrive at the buffer from
the forward link and 2 ATM cells from
backward link which are segmented from a
ACK packet before the increasing of the
delay time of backward ACKs by F-TCP
takes effect. When the buffer occupancy
reaches as high as 500 - 26 - 2 = 472 cells,
additional specified delay time is triggered
to be added to the consecutive backward
ACKs. Therefore the consecutive ACKs stay
more time in the 1P layer of the sender node
before they are passing to the TCP layer. By
carefully selecting the delay time, the buffer
occupancy returns below 472 cells as a
result of the cells being transferred by ATM
switch [1].
2.3.5 Results when F-TCP is disabled
It can be seen that without F-TCP, the buffer
of ATM switch faces to overflow. As a
result, the throughput is very low. With the
same network configuration and the
parameters of the network elements, when
F-TCP is enabled, more than 2M bytes of
data are sent , while when FTCP is disabled,
only less than 400K bytes of data are sent in
the same period (10 sec.) One time of ATM
buffer overflow will result in the loss of one
TCP segment and consequently reducing the

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 114

TCP throughput significantly in plain TCP
[1].

3. FAST TCP: Benefits,
Achievements and Future
Planning:
3.1 Advantages & Disadvantages
of FAST TCP:
Advantages of FAST TCP

• FAST TCP is just like TCP in the
sense that any application, such as
FTP, using TCP will use FAST TCP
once the patch is installed. You
don’t need any special programs to
use FAST TCP.

• In principle FAST TCP can be
transported over IPV6 or IPV4.
Unfortunately the Linux
implementation splits the TCP
source into an IPV6 and IPV4 part
and we only have an IPV4
implementation presently. An IPV6
implementation is on the roadmap
[10].

Disadvantages of FAST TCP
• Reverse path congestion reduces

throughput.
• Many FAST sources cause buffer

overflow and packet loss.
• Route change may reduce

throughput [10].

3.2 Avoid typical Internet
congestion:
The transmission control protocol (TCP) is
seen as the dominant transport protocol. The
current stability of the Internet depends on
the end-to-end congestion control of TCP.
TCP does not perform well in high-speed
wide area networks. To achieve a steady-
state throughput of 7.2Gbps with 1500 byte
packets and a 100 ms round trip time (RTT),
for example, the packet loss rate must be
less than 4.17 × 10−10. This is beyond the
limits of achievable fiber error rates. In
addition, TCP requires 40,000 RTTs, or
almost 70 minutes, to recover from a single
packet loss. This means that TCP cannot
fully utilize the available bandwidth. The

remarkable thing about FAST TCP is that it
uses the existing Internet. The secret is in
software at the sending point that parses the
data into network-compatible packets that
avoid typical Internet congestion as they
weave their way to their ultimate destination
[10].

3.3 Use standard packet size:
The protocol is called FAST, standing for
Fast Active queue management Scalable
Transmission Control Protocol (TCP). The
FAST protocol sustained the speed using
standard packet size, stably over an
extended period on shared networks in the
presence of background traffic, making it
adaptable for deployment on the world's
high-speed production networks. The ability
to demonstrate efficient high performance
throughput using commercial off the shelf
hardware and applications, standard Internet
packet sizes supported throughput today's
networks, and requiring modifications to the
ubiquitous TCP protocol only at the data
sender, is an important achievement. The
problem today is that this algorithm cannot
scale to anticipated future needs, when the
networks will be compelled to carry millions
of uncompressed voice calls on a single path
or support major science experiments that
require the on-demand rapid transport of
gigabyte to terabyte data sets drawn from
multi-petabyte data stores. This protocol
problem has prompted several interim
remedies, such as using nonstandard packet
sizes or aggressive algorithms that can
monopolize network resources to the
detriment of other users. Despite years of
effort, these measures have proved to be
ineffective or difficult to deploy. Using
standard packet size that is supported
throughout today's networks, the current
TCP typically achieves an average
throughput of 266 Mbps, averaged over an
hour, with a single TCP/IP flow between
Sunnyvale near SLAC and CERN in
Geneva, over a distance of 10,037
kilometers [10].

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 115

3.4 The planned future
improvements:

 Measurement of Backward Queuing
delay to avoid reverse path
congestion affecting throughput.

 Detection of route change.
 Tuning of Socket Buffers.
 Reducing number of ACKs

processed to improve CPU
utilization.

 Introduce 'TCP Friendliness'
parameter to control sender
aggressiveness in lossy
environments.

 SACK processing optimization [10].

4. Conclusion
FAST TCP is an alternative congestion
control algorithm in TCP. Lot of people
already worked on this subject. Their
research work and results yield a new
dimension for the entertainment and
scientist eras. TCP flow control mechanism
can only indirectly detect congestion by
keeping track of how many packets are lost,
congestion control has to be initiated after
packet losses due to congestion have already
happened. Therefore, if TCP control time
can not be speed up, TCP will cause major
overloads and outages on long haul
networks Furthermore, the maximum
window size allowed in current systems is
not large enough to catch up with
Bandwidth-Delay Products. We studied Fast
Active queue management Scalable
Transmission Control Protocol
comprehensively. FAST TCP uses the same
packet sizes as regular TCP, the hardware
that carries messages around the net will still
work. The difference is in software and
hardware on the sending computer, which
continually measures the time it takes for
sent packets to arrive, and how long
acknowledgements take to come back. This
reveals the delays on the line, giving early
warnings of likely packet losses. The FAST
TCP software uses this to predict the highest
data rate the connection can support without
losing data. We discussed the issues related

to congestion control in the current TCP. We
compare TCP with FAST TCP and also
discussed Token-based FAST TCP. We also
check its performance in ATM Networks.
Steven Low and Co. did a fantastic job in
this research area. We studied their work as
well. Also some benefits, achievements and
some planned future improvements are also
described. And the bandwidth-hungry
entertainment industry is also looking at Fast
TCP.

References:
 [1] Jing WU, Peng ZHANG, Tao DU, Jian
MA and Shiduan CHENG, “Improving TCP
Performance in ATM Network by the Fast
TCP Flow Control,” International
Conference on Communication Technology
ICCT’98, October 22-24: 1998 Beijing,
China
[2] C. Jin, D. X. Wei, and S. H. Low, “TCP
FAST: Motivation, Architecture,
Algorithms, Performance,” Proc. IEEE
INFOCOM, Mar. 2004,
http://netlab.caltech.edu
[3] Qian Wang, Jing Wu, Shiduan Cheng,
Jian Ma2, “Fast TCP Flow Control with
Differentiated Services”
 [4] F. Peng, B. Wei and Y. Ma, “Delay
performance analysis of token-based fast
TCP in window limit systems”, Proc. 9th
International Conference on Computer
Communications and Networks, 2000.
[5] [13 Peng Zhang, Jian Ma, “ Token-
based Fast-TCP ”, Invention Report, 1999
[6] H. Wu, Jing Wu, Keping Long, Shiduan
Cheng, Jian Ma2, “TCP Enhancement:
Token based Fast-TCP delay algorithm”
 [7] W. Qian, W. Jing, C. Shiduan and Ma
Jian, “Differentiated Service Fast-TCP
Policy for Resource Management”
[8] F. Peng, C.M. Leung, “Performance
Analysis of Token-based Fast TCP in
Systems Supporting Large Windows”
 [9] C. Jin, D. Wei, S. H. Low, “FAST TCP:
From Theory to Experiments”
http://netlab.caltech.edu/FAST/ December 6,
2003
[10] http://netlab.caltech.edu/FAST
[11] http://newscientist.com
[12] http://pr.caltech.edu/media

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 116

http://netlab.caltech.edu/
http://netlab.caltech.edu/FAST/
http://netlab.caltech.edu/FAST
http://newscientist.com/
http://pr.caltech.edu/media

	3.4 The planned future improvements:

