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Abstract: - This paper generalizes the application of artificial neural network (ANN) by classifying six common 

control chart patterns into eight classes of time series data patterns. Incorporating two more patterns of bottom-

out and peak-off can yield better insights for not only the traditional real time control environment but also the 

behavioral study in other time-domain systems such as money and security markets. This work reports the 

results of empirical study on the incorporation of new extracted features, especially those with a lesser extent of 

outliers’ effect, for example median, robust regression and RMS value of the time series. The feedforward 

backprogation ANN is deployed and experimented using two different training schemes, namely the 

Levenberg-Marquardt method and the Bayesian regularization. The best performance generated by the ANN is 

98% classification accuracy. Technical insights into the model settings are also provided. 
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1   Introduction  

The system of control chart is a well-known 

application of time-series data patterns to study the 

behavior of the underlying process in both real-time 

environment and off-line. Traditionally, there are six 

commonly classified patterns of interest which help 

to indicate the condition of the ongoing system: 

normal, cyclic, increasing trend, decreasing trend, 

upward shift and downward shift. Unfortunately, 

these patterns only help to confirm abnormalities 

after the events have occurred. For a shorter haul or 

in a real-time control system, the early detection of 

revival or reversal is more insightful for the tasks of 

monitoring and control. The confirmation of ending 

of uptrend or downtrend in stock price pattern is an 

example of such requirements. Thus, this paper 

proposes the use of two additional patterns of 

bottom-out and peak-off to supplement the six 

common control chart patterns. 

     Artificial neural network (ANN) is a prospective 

classifier of the above-mentioned eight classes due 

to its flexibility in modeling without prior 

knowledge of how classifier’s determinants interact 

with each other. Also, ANN provides robustness on 

volume of input data via the model’s parameter 

tuning process and architectural design. There are 

many proven records on the successes of ANN as 

being classifier for control chart pattern, such as the 

work of Lavangnananda and Piyatumrong in 2004 

[1], Pham and Chan in 1998 [2], Sagiroglu et.al. in 

2000 [3], and Guh et al. in 1999 [4]. A detail look at 

the use of ANN for pattern recognition with 

numerous other applications was given by Bishop 

back in 1995 [5] and Rapaso and Cruz in 2002 [6]. 

     Comparing with traditional statistical techniques, 

ANN is more robustly effective especially when 

applying in an environment where data is noisy. The 

over-fit effect of the well defined mathematical 

model of statistics is overcome by the adaptability 

of ANN to new and noisy data via its learning 

ability.  

     However, the flexibility of ANN leads to a 

variety of architectural designs and learning 

approaches which possibly yield different 

performance level achieved on the same problem, as 

reported by Pham and Chan [2], Pham and 

Sagiroglu [7], and Sagiroglu et al. [3]. The difficulty 

lies in the design and tuning issues since there is no 

universal rule that guarantees best result of 

modeling. As presented in Section 4 later on, this 

paper also reports a satisfactory achievement of a 
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feed-foreward backpropagation network or simple 

MLP model and provides empirical proof on the 

importance of parameter settings. 

     Next section describes the empirical study on the 

simulated data representing all eight classes and the 

selection of attributes to classify them. Section 3 

then develops the architecture of the ANN model 

with an illustration of the parameter tuning process. 

Results of simulation and issues of implementation 

are discussed in Section 4. Finally, the paper 

presents concluding remarks with a proposed future 

direction of work. 

 

 

2   Input Data and Determinants of the 

Classifying Model 

The section first describes the eight patterns of 

interests, especially how to generate the simulated 

data of the additional two classes. Then the process 

of selecting the classifier’s attributes is provided. 

 

2.1 Generating simulated time-series data 

Focusing on the classification of time-series data 

obtained from the control chart system or alike, this 

study expands the scope of the traditional classifier 

by including two more generic classes: Peak-off and 

Bottom-out patterns. Figure 1 shows all possible 

patterns consisting of the two new and the other six 

standard patterns.  

 

Pattern 1: Random Pattern 2: Cyclic

Pattern 3: Up trend Pattern 4: Down trend

Pattern 5: Upward shift Pattern 6: Downward shift

Pattern 8: Peak offPattern 7: Bottom out

Pattern 1: Random Pattern 2: Cyclic

Pattern 3: Up trend Pattern 4: Down trend

Pattern 5: Upward shift Pattern 6: Downward shift

Pattern 8: Peak offPattern 7: Bottom out
 

Fig. 1. Time series pattern to be classified 

 

These two additional classes would make the model 

more applicable to other systems, e.g. mining for the 

selected patterns of the stock price movement time 

series data, detecting the sign of recovery or 

reversion of the on-line observation on any control 

patterns and systems. 

     Except for the additional two new classes, all 

data were synthetically generated with the standard 

schemes used in the existing literature such as those 

by Lavangnananda and Piyatumrong [1] and 

Sagiroglu et al. [3]: 

 

Randorm pattern: y(t) = µ +r(t)σ                       (1) 

 

Cyclic pattern: y(t) = µ +r(t)σ+asin(2πt /T)      (2) 

 

Up trend pattern: y(t) = µ +r(t)σ + gt                (3) 

 

Down trend pattern: y(t) = µ+r(t)σ −gt             (4) 

 

Upward shift pattern: y(t) = µ+r(t)σ +ks           (5) 

 

Downward shift pattern: y(t) = µ+r(t)σ −ks      (6) 

 

where y(t) is the time series data at time t = 1, 2, 3, 

..., 60, µ and σ are the mean and standard deviation 

of the simulated data , r(t) is the random number 

generating function, a is the amplitude of the cyclic 

pattern, g stands for the slope of the series with 

upward or downward patterns, k is the point of the 

shifting, s is the step size for the shifting, and T is 

the period of the cyclic pattern.  

     Given Γ as the turning point of the trend, two 

new classes of peak-off and bottom-out patterns are 

generated in this work by using the following 

functions: 

  

Peak-off pattern:  

          ( ) ( )  for 

      ( ) ( ) ( ) for 

y t r t gt t

y r t g t t

µ σ
σ

= + + ≤ Γ


= Γ + − ⋅ −Γ > Γ
                      (7) 

 

Bottom-out pattern:     

         
( ) ( )  for 

      ( ) ( ) ( ) for 

y t r t gt t

y r t g t t

µ σ
σ

= + − ≤ Γ


= Γ + + ⋅ −Γ > Γ
                      (8) 

 

2.2 Selection of classifier’s parameters 

Instead of raw time series data, Klösgen and Zytkow 

[8], Lavangnananda and Piyatumrong [1], and 

Nanopoulos et al. [9] reported success stories of 

extracting a limited set of dominating features and 

treating them as ANN’s input. Adopting a feature-

based neural network model, this research takes into 

account thirteen statistical measures representing 

characteristics of the 60-period time series data. 

These are listed below: 

 

- Traditional statistical values: median (m), 

variance (σ2
), skewness, kurtosis;  
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- Correlation coefficients obtained from the 

robust regression using reweighted least 

square (slope, Y0 or the intercept point on Y 

axis where t=0, and slope/SE where SE is the 

standard error measured for the estimation of 

the coefficient),  

- The root-mean-square (RMS) of inputs which 

equals the norm or the Euclidean length (the 

square root of the sum square of the series of 

input which represent the magnitude of the 

data series) divided by the square root of the 

length of the series, or ( )2

1
( ) /

n

t
x t n

=∑ . 

- The approximation of the integral of the series 

using trapezoidal numerical integration with a 

unit spacing. 

 

     The Median and the three estimated coefficients 

of correlations obtained from the robust regression 

scheme are selected because of their smoothing 

function which aims to limit the effect of outliers. 

The robust regression applies an iteratively 

reweighted least squares algorithm. Starting from 

the ordinary least square in the first round, the 

reweighing process is done iteratively basing on the 

bi-square function of the residuals from the previous 

iteration: 

 

 
2

2*(1 )
* * 1

t
t t

r
weight r

tune s h

 
= − 

− 
       (9) 

  

where rt is the residual of data at time t from the 

previous iteration, s is an estimate of the standard 

deviation of the error term. In this context, s = 

MAD/0.6745, where MAD is the median absolute 

deviation of the residuals from their median and the 

constant 0.6745 makes the estimate unbiased for the 

normal distribution. The other two variables are the 

vector of leverage values from a least squares fit (h) 

that adjust the residuals by down-weighing high-

leverage data points with a large effect on the least 

squares fit and the tuning constant of 4.685 (tune) 

which helps to standardize the adjusted residuals. 

Overall, this algorithm gives lower weight to points 

that do not fit well. For more detail, reader is 

referred to the work of DuMouchel et al. [10] and 

Street et al. [11]. 

     The other three traditional statistical measures 

have been proven as valid extracted features for 

classifying into six classes based on a synergistic 

ANN [1]. The incorporation of the remaining two 

measures of RMS and integral of the series are to 

complement the system with spatial features.  

     To enhance the ability in detecting the reversion 

of trend data, the 60-periods of time series data is 

chopped into 2 partially-overlapped windows each 

with 45 periods as shown in Figure 2.  All those four 

traditional statistical features are extracted from 

each window and then the resulting subtractions of 

each pair of the corresponding features are collected.  

 

45 periods

45 periods

 
Fig. 2. Division of time series data 

 

Thus, there are another four features representing 

the difference of features in the two windows 

signified as 1 and 2, respectively: 

m2-m1, 
2 2

2 1σ σ− , skew2-skew1 and  

kurtosis2-kurtosis1. 

 

 

3   Neural Network as the Classifier 

The multilayer feed-forward back-propagation 

neural net was selected in this research due to its 

speed and satisfactory performance. In the next 

subsection, we discuss input preprocessing and 

selection of the non-redundant set of inputs based on 

principle component analysis (PCA), follow by the 

structure of ANN with design of experiment. 

 

3.1 Non-redundant set of determinants and 

pre-processing 

To optimize the speed and performance of the ANN, 

all 13 inputs were pre-processed so as to standardize 

their values to have a zero mean with standard 

deviation of one. This is followed by analysis with 

the Principal Components Analysis (PCA) method 

[12] so that only those input factors with a certain 

confidence level of being independent from the 

others would be chosen as the representative set of 

the classifier’s attributes.  

     In brief, using PCA, the covariance is generated 

from all 13 extracted features, then the eigenvectors 

and eigenvalues are calculated from the resulting 

square matrix of covariance. Eigenvalue represents 

the magnitude of contribution to the total variance in 

the data set. Those features (eigenvectors) with an 

eigenvalue of less than the specified value, e.g. 2% 

of total variance for this context, will be excluded.   

     The experiment was conducted on three sets of 

data with a total number of 800 series of 60-period 
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data, separating into 70 series of training data for 

each class, 15 series of validating data for each 

class, and 15 series of testing data for each class. 

The validating set of data is to make sure that the 

resulting model is not overfitted, which may happen 

due to the limited number of training data. All data 

were generated with a high level of noise so that 

they reflect difficult situations in real-time control 

systems, especially the simulated data of the existing 

six patterns that have been adopted from the work of 

Lavangnananda and Piyatumrong [1]. 

 

3.2 ANN model and design of experiment 

Empirically, according to the result of PCA test with 

a threshold of 2% contribution to to total variance, 

only nine of those thirteen extracted features are 

indicated as uncorrelated inputs. To gain technical 

insights, the feed-forward backpropagation ANN is 

trained in two different schemes, which are 

Levenberg-Marquardt (trainLM) [13] and Bayesian 

regularization (trainBR) [14]. In brief, trainLM 

manipulates the gradient descent with small step size 

at the start and swaps quickly to the Newton-alike 

method, which is faster and more accurate when 

reaching near an error minimum. According to 

Hagan and Menhaj [13], trainLM can train the ANN 

with a much faster rate than the traditional gradient 

descent. The latter training scheme, trianBR, may be 

viewed as a smoothened version of Levenberg-

Marquardt. It optimizes the generalization quality of 

network training by minimizing a linear 

combination of squared errors and weights. By the 

virtue of its generalization quality, it should be less 

prone to overfitting the input data, given the same 

architecture or set of inputs. 

     Based on our empirical tests, the best structure 

and the parameters set for each scheme are different. 

Using trainLM, the MLP performs the best when 

organized in a 9-8-8 fashion which represents the 

number of nodes in the input layer, single hidden 

layer, and the output layer, respectively. With 

trainBR, the best organization is 9-9-9-8 where 9 

nodes are required in 2 hidden layers. Both models 

require a common set of training parameters as 

summarized below:  

Transfer function:  

Hyperbolic tangent sigmoid (Tansig) 

Maximum epoch: 100; 

Performance goal: 0; 

Maximum validation failure: 5; 

Minimum performance gradient: 1e-10; 

Weight/bias learning function:  

Gradient descent with momentum weight 

and bias 

     Even though trainBR requires the performance 

function of SSE (sum square error), the experiment 

shows that trainLM performs better with function of 

MSE (mean square error). Accordingly, we set the 

different performance functions on each method.  

     The model was trained, validated and tested in 10 

separate runs with 3 replicates each. Data from each 

replicate is randomly re-sampled from the original 

set of 800 time-series data. The resulting 

performance is reported in the next Section. 

 

 

4   Results of Experiment and 

Discussion  

This section presents the results of experiment and 

gives some insights into the technical issues. From 

this point onwards, we refer the model with trainLM 

as model A and the model with trainBR as model B 

for brevity. 

 

4.1 Experimental results 

The results of experiment are summarized in Table 1 

below. For both Models A and B, the accuracy of 

the model is around 95% on average, with the best 

result of 98.3% where only 2 falses out of 120 

classifications were found.  

 

Table 1. Experimental results for 10 replicates 

Training 

approach 

Average 

Accuracy 

Best 

Accu. 

Elapse 

time 

(s) 

Epochs 

Model A 95.0% 98.3% 35 32-45 

Model B 95.3% 98.3% 40 22-40 

 

     Even though Model B seems to take a bit longer 

than Model A computationally, there is no 

significant difference. More details of experimental 

results for each replicate is provided in Table 2. 

 

Table 2. Results of experiment in each replicate 

Running number
Model A Model B

1 0.93 0.95

2 0.95 0.95

3 0.94 0.97

4 0.98 0.93

5 0.98 0.98

6 0.94 0.93

7 0.94 0.94

8 0.94 0.96

9 0.96 0.97

10 0.94 0.95

Average accuracy 0.950 0.953

Classification accuracy
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     As seen in Table 1, in most cases, the trainings 

were forced to stop due to the failure of validation 

vector exceeding the maximum value of 5 epochs to 

improve the network performance. Figure 3 shows 

the patterns of MSE improvement over the training 

session with a stagnancy when validation 

approaches epoch 28 that forced the training process 

to stop on epoch 43. Empirically, the result with no 

validation gave a very much lower MSE but worse 

accuracy (less than 90%). The validation is proven 

in this context as a useful tool to prevent ANN from 

overfitting and greatly saving computational time.  

 

 
Fig. 3. Converging MSE improvement during 

training with a stop due to stagnant improvement on 

validation. 

     Empirically, Model B is less sensitive (in terms 

of accuracy) to the change in model organization. 

For example, Model B could give around 94% 

accuracy when organized in a 9-8-8 model but 

Model A gave adverse results (less than 90% 

accuracy) when organized in a 9-8-8-8 model. 

Model B required a longer lapse time but fewer 

number of training epochs.  

     In conclusion, the experiment has proven that 

ANN is an effective model for classifying all eight 

control chart patterns of requirement. Model B 

(Bayesian regularization training) is found to have 

the same performance as Model A (Levenberg-

Marquardt) but with a higher robustness or 

generalization quality. That is, the Bayesian 

regularization training algorithm is less sensitive to 

the various organizations of ANN models, although 

the learning algorithm of Levenberg-Marquardt is a 

bit faster.   

 

4.2 Discussion and insights 

There are a couple of additional insights to discuss 

according to the experimental results. First of all, the 

simple and popular multilayer feed-forward 

backpropagation network works very well in this 

context. The relevant factors are the quality of 

attributes, the selection process of PCA and the 

normalization of input scales. The justification for 

the first two factors is that when the attributes or 

determinants of the classifier is closely correlated 

with the pattern, then it would require less complex 

model to capture the behavior of the pattern of 

interest. The justification for the latter factor is that 

the equalized scale avoids bias and gives a flat level 

of importance to every determinant in determining 

the outcome.  

     Secondly, the achievement obtained from this 

simple model on distinguishing the eight control 

chart patterns, involving the extra two peak-off and 

bottom-out ones, indicates an opportunity to apply 

this classification method out of the traditional 

control chart pattern applications. For example, this 

methodology may be incorporated as an integral part 

of the forecasting or mining for stock price pattern 

or other trendy time-series data. 

 

 

5   Conclusions and Future Direction  
A number of extracted features with smoothing 

effect, e.g. correlation coefficients from the robust 

regression, median, and difference of statistical 

measures from two overlapped windows, have been 

combined into the determinants of the classifying 

model that differentiates control chart patterns. In 

addition to the six standard patterns, two more 

patterns, i.e. peak-off and bottom-out, are added so 

that the classifier is generalized and can be applied 

to wider applications, e.g. stock price patterns. A 

simple feed-forward backpropagation neural 

network is modeled with two distinct training 

methods: Levenberg-Marquardt and Bayesian 

regularization. From simulated experiments, some 

insights are given. (i) A simple MLP network is 

proven to be an effective model for classifying the 

eight patterns of time-series data, with the aid of 

appropriate features and preprocessing. (ii) Different 

learning approaches can lead to different effective 

architecture of ANN (e.g. number of hidden layers).  

     Potential directions for future work are, for 

example, to use a more sophisticated ANN model, 

e.g. synergistic organization, self-organizing 

structure, etc., so that the overall performance can 

be improved. Another interesting direction is to 

employ the model into a system with real time-

series data with significant economic values, e.g. 

0 5 1 1 2 2 3
1

-3 

1
-2 

1
-1 

1
0 

34 Epochs 

Stop at MSE=0.0056, Goal is 0 

Validation 

Training 
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incorporating it as an integral part of the forecasting 

system or decision support system for buy-sell-hold 

operations in a specific stock market. 
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