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Abstract: In this paper, an Ant Colony Optimization (ACO) method is applied to the problem of scheduling a 
single machine with sequence-dependent setup times. The objective is to minimize weighted tardiness of all 
jobs. Three sets of randomly generated problems of different sizes are solved with the proposed solution 
technique. To examine the performance of ACO algorithm, the same problems have been also solved using 
Tabu Search (TS) method. It is shown that a well-tuned ACO, with proper definition of heuristic function, can 
outperform TS in terms of solution quality while taking considerably longer CPU time. 
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1   Introduction 
Different variations of job shop scheduling (JSP) 
problems have extensively been studied in the last 
fifty years. Single machine scheduling with 
sequence dependent setups, is one of the most 
difficult one in the classical scheduling theory. Such 
problems are NP-hard in nature and can not be 
solved efficiently by traditional solution procedures 
such as branch and bound. Nevertheless, these 
problems can be good candidates for evaluating new 
solution procedures. Among different heuristics, 
genetic algorithm (GA), tabu search (TS) and 
simulated annealing (SA) have been successfully 
applied on JSP [1-3]. 
Single machine scheduling problem which is 
investigated in this paper is generally smaller than 
multi-machine problems in its size. However, its 
capability for modeling real life flexible production 
systems and also multi-machine environments with 
a single bottleneck, has kept it a fresh topic of 
research work. 
 
2   Introducing Job Shop Problem 
The JSP problem optimized here is as follows. There 
are n different jobs which can be all available for 
processing at time zero; nevertheless, the machine 
can only do a distinctive job at each certain time. 
For each job shown as j, four predefined parameters 
are involved which are processing time (pj), due date 
(dj), weight (wj) - that can also be considered as cost 
per unit time paid due to tardiness - and finally, the 
setup time (sij). The last one is used when the job j 
immediately follows job i. It is notable that 

considering sequence-dependent setup times 
increases the complexity of the weighted tardiness 
as a NP-hard problem. 
Among many performance criteria proposed in 
literature, weighted tardiness is more commonly 
used. Therefore, in this work, the objective is to 
implement the ACO technique in order to find the 
sequence of jobs that minimizes total weighted 
tardiness of all jobs. 
 
 
3   Ant Colony Optimization and Its 
Application to JSP 
This algorithm was first introduced by M. Dorigo et 
al. in 1997 [4] and up till now has been extensively 
applied on different types of problems such as 
traveling salesperson problem, vehicle routing 
problem [5], quadratic assignment problem [6], and 
JSP. Ant colony is increasingly used to solve a 
variety of job shop scheduling problems, both in the 
single-machine and multi-machine levels [7-9]. 
Real ants are capable of finding the shortest path 
from a food source to their nest without using any 
visual cues but by exchanging the information of 
pheromone, a chemical substance, with each other. 
It is very simple and not even deterministic but 
effective as it is cooperative. Each ant deposits 
pheromone while marching and the other ants follow 
in probability the trail of pheromone. More 
pheromone is accumulated if more ants follow a 
certain path and on the other hand, the trail intensity 
decreases as time passes due to evaporation. All this 
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behavior is simulated with a little difference in ACO 
algorithm. 
In this algorithm, Eq. (1) which is the combination 
of two distinctive operators, formulate the 
probability of moving to the next step in an 
evolutionary structure: 
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The first function ),( jiτ  shows the amount of 
pheromone interpreted as sequences in JSP. In this 
notation,  is the job which is decided to be 
assigned to position i . The amount of pheromone is 
directly related to the path’s fitness function or its 
goodness. This function acts as a positive feedback, 
determining the probability of selecting each 
unselected job in permutation. It has a dynamic 
behavior due to the simultaneous evaporation and 
deposition of pheromone on sequences. The first 
effect lets the unselected sequences have still 
chances to be evaluated and the second one 
intensifies the best solutions obtained toward the 
optimum. 

j

In this paper we employ two ACO approaches to the 
single-machine scheduling problem. In the first 
approach, we present this function in the form 
named “Sequence-based Pheromone Deposition” 
(SPD) in which the pheromone deposition is 
sequence based. Assuming that the optimized 
sequence is unique, there is another pheromone 
deposition based on the sequence succession, in 
addition to the normal deposition based on the job 
location. It should be mentioned that in SPD, no 
special heuristic is applied for ),( jiη . 
The second approach used here, involves a heuristic 
named “Apparent Tardiness Cost with Setups” 
(ATCS) rule introduced by Lee et al. [10]. This 
heuristic is of constructive type and can easily be 
embedded in ACO algorithm due to the same nature 
of step-by-step construction of solution. The ATCS 
function is based on three sub-rules including 
shortest processing time (WSPT), minimum slack 
(MS), and the shortest setup time (SST). It is 
presented as follows: 
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where  is the current time and  is the index of the 
job just completed. Also, 

t v
p  is the average 

processing time of all jobs and s  is the average 
setup time. The two parameters  and are used 
for tuning the function and the other ones are as 
defined in section 2.    

1k 2k

It should be noted that in ACO, the probability of 
moving to the next step obtained by Eq. (1) is not 
directly and simply applied as it seems. The 
mechanism is known as “state transition rule” that in 
addition to two other rules namely “local updating” 
and “global updating” form the gist of ACO. These 
three rules are described in the following sections. 
 
3.1 State Transition Rule 
Unlike algorithms such as tabu search, genetic 
algorithm and simulated annealing where the coded 
solution candidate is built altogether and then 
evaluated, the ants construct the solution in a step-
by-step procedure in ACO. It means each ant should 
decide where to go for its next step by selecting 
among all unvisited candidate elements. The 
mechanism used in ACO is a combination of 
directed greedy behavior and Rolette wheel known 
as state transition rule: 
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The parameter is the latest chosen element and 
belongs to the list 

kl

il L which includes all possible 
candidates for the next step. 
The state transition rule has two sub-rules, while  
and 0 determine which one to be used. The 
constant parameter 0q  demonstrates the relative 
importance of sub-rules; owever, q  is a randomly-
generated number uniformly dist te

q
q

h
ribu d in 

domain [ ]1,0 . 
If there comes 0qq ≤  which is the case of 
exploitation, the element with largest combination of 
pheromone and heuristic is chosen. Otherwise, the 
algorithm does not decide deterministically but only 
gives chances to the elements in proportion to their 
values as it is in a Rolette wheel which is just the 
case explained in Eq. 1. Thus, exploration of 
candidates with smaller function values is made 
feasible. In general, m  ants are employed acting in a 
parallel manner. Their first elements of solution are 
assigned randomly and then to the end of 
constructing the solution, state transition rule is 

peated. re
 
 
3.2 Local Updating Rule 
To avoid premature convergence, a local pheromone 
trail updating is performed on the value of 
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pheromone related to the pair of elements just 
chosen by state transition rule: 

011 ),()1(),( ρττρτ +⋅−= −− kkkk llll   (4) 
where 0τ is the initial amount of pheromone at the 
beginning of the first iteration and is assigned as a 
constant value. The other parameter is ρ  which is 
lso c tant during the solution and is chosen from 
omain

s positive feedback 
makes the search for the real be  m
directed. The rule is given by: 

a ons
d [ ]1,0 . 
 
 
3.3 Global Updating Rule 
In ACO, the globally best ant which is the ant that 
has constructed the best solution from the beginning 
of the trial is allowed to deposit pheromone on its 
trail. This rule which acts a

st solution ore 
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where 10 <<

1  

α  in Eq. (5) is the pheromone decay 
parameter and gbWT  in Eq. (6), is the amount of 
objective function which is the weighted tardiness 

lated to the best sequence. 

t possible 

er defi ber o
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4   Numerical Results 
The two variants of ACO described above are 
employed to optimize three 8-, 20- and 50-job 
randomly generated problems. Ant algorithm is a 
probabilistic method that is highly sensitive to the 
parameter settings. Therefore, parameter tuning 
should be carefully applied. For the bes
efficiency of the algorithm, the following settings 
have been determined after several trials.  
The algorithm employs 10 ants in each iteration to 
construct 10 different tours or solutions. The 
termination takes place aft ned num f 
iterations which depends on the problem scale. In 
the state transition rule, 9.00 =q  and 5.0=β , 
which has proved to provide better convergence. In 
both local and global updating rules, α  and ρ , the 
evaporation and decay factors, were both set to 0.1. 
Since the initial amount of pheromone, 0τ , plays an 
important role in the quality of initial sequence and 
convergence towards the final best solution, it 
should be set are. After examination of 
different values for this parameter, the average 
quantity of )/(10 nWT=

 with great c

τ  which is proposed by 
Liao and Juan [8], produces satisfactory results. In 
this equation, n is the number of jobs, and WT is the 

s 
to the best solution after more the 1300 iterations 
which is equivalent to 100 seconds of search time. 

approximate amount of weighted tardiness obtained 
by applying ATCS. 
The convergence curve for the 50-job weighted 
tardiness problem is given in Figure 1. As illustrated 
in this Figure and Table 1, the algorithm converge
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 TS presented in Fig. 2 
show no more improvement after about 85 iterations 
in just about 25 seconds. 

Fig.1. weighted tardiness  50-job problem by ACO 
with ATCS 

 
To evaluate the performance of ACO with 
probabilistic nature, the tabu search method with 
deterministic behavior is also applied to the same 
problems. A comprehensive description of TS 
method and its applications can be found in [11]. 
Among TS algorithm parameters, tabu list size and 
neighborhood generation mechanism are the most 
important ones. The tabu size is set to 20 moves to 
allow enhanced search of solutions space. For the 
neighborhood generation mechanism, pair wise 
interchange which is more suitable for large scale 
problems is employed in this paper [12]. 
Computational results of
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Fig.2. weighted tardiness of 50-job problem by TS 

 
As indicated in Table 1, ACO and TS perform quite 
differently in terms of solution qualities and search 
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times. The results clearly state that TS has a 
considerably lower convergence time. However, it 

ial randomly generated sequence, while 
the TS start point is just the evaluation of that 
sequence. 

stalls to improve in bigger problems and fails to 
approach the global optimum. 
As it can be seen in Fig. 3, the ACO range of 
improvement is about 9% while the case is 65% for 
TS. This apparent improvement is mainly because of 
the inappropriate start point employed by the TS. In 
fact, the ACO creates its start point by applying the 
ATCS operator embedded in the state transition rule 
on the init
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Fig.3. Time history of 50-job problem: The dash-dot and 
continuous lines show the TS and ACO with ATCS 

ngthier due to the relative intricacy of 
perations needed to be done for each next-step 
ecision. 

step evaluation in ACO are more 
me consuming in nature comparing to the ones 
mployed by TS.  
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solution 

95 2015 2.1 275 0.12 52.1 ACO - SPD 

100.2 1775.9 2.5 225.7 0.13 46.7 ACO - ATCS 

24.1 1883 0.3 243.8 0.045 46.7 TS 
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