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Abstract: - This paper introduces the confidence interval estimate for measuring the bullwhip effect, which has 

been observed across most industries. Calculating a confidence interval usually needs the assumption about the 

underlying distribution. Bootstrapping is a non-parametric, but computer intensive, estimation method. In this 

paper, a simulation study on the behavior of the 95% bootstrap confidence interval for estimating bullwhip effect 

is made. Effects of sample size, autocorrelation coefficient of customer demand, lead time, and bootstrap 

methods on the 95% bootstrap confidence interval of bullwhip effect are presented and discussed. 
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1   Introduction 
The bullwhip phenomenon (or effect) referring to 

increase of demand variability further upstream in 

the supply chain has been observed or recognized in 

industry for a long time. The phenomenon can 

potentially cause instability in the supply chain and 

increase the cost of supplying goods to customer 

demand. The first recognition of this phenomenon 

can be traced back to Forrester (1958). Other earlier 

papers making a major contribution to understanding 

of bullwhip phenomenon include Blanchard (1983), 

Blinder (1982, 1986), Kahn (1987), and Stermn 

(1989). Recently, Lee et al. (1997a, b) popularized 

the term “bullwhip effect”, and analyzed four 

potential sources of the bullwhip effect: demand 

signal processing, rationing game, order batching, 

and price variations through simple mathematical 

models, which focuses on the retailer-supplier 

relationship and considers a first-order 

autoregressive (abbreviated as AR (1)) demand 

process. Lee et al. (1997a, 2004) identified, 

moreover, the bullwhip effect as a natural 

consequence of demand signal processing, which 

refers to the situation where demand is 

non-stationary and one uses past demand 

information to update forecasts. Chen et al. (1999, 

2000a, b) are early papers that link forecasting 

method with the bullwhip effect. Using an AR (1) 

demand process similar to Lee et al. (1997a), they 

quantify the magnitudes of the bullwhip effect 

resulting from moving averages, exponential 

smoothing, and other forecasting methods. Zhang 

(2004) continued the study of Chen et al. and derived 

the bullwhip effect measure for minimum 

mean-squared error forecasting method. 

The Bullwhip effect is generally regarded as a 

performance index to respond to the instability in a 

serial supply chain. When applying the proposed 

measures to measuring the bullwhip effect in actual 

practice, lead time and autocorrelation coefficient of 

demand process should be known. Lead time is the 

elapsed time between releasing an order and 

receiving it. In many literatures, lead time is regards 

as a controllable decision variable and can be 

decomposed into several components, each having a 

crashing cost for the respective reduced lead time 

(Pan and Hsiao, 2005). However, the exact 

autocorrelation coefficient of demand process is 

usually unknown because the number of 

observations collected from customer demand 

process is finite during a limited time horizon As a 

result, it is replaced by a sample autocorrelation 

coefficient, and this gives the measured bullwhip 

effect a point estimate of the exact bullwhip effect.  

In addition to the point estimator, interval estimation 

is important for the statistical inference on bullwhip 

effect of a particular supply chain. In this paper, we 

focus the investigation on the confidence interval of 

bullwhip effect. Calculation of the confidence 
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interval for the bullwhip effect usually needs aware 

of the underlying distribution, but it could be 

difficult to know or obtain. Thus, we develop the 

confidence interval based on the bootstrap principle. 

Bootstrapping introduced by Efron (1979, 1981, 

1985) is a statistical method, which is 

non-parametric or free from assumptions of 

distribution. 

2   A Simple Supply Chain Model 
 

2.1 Replenishment policy 
 

Assume a retailer-supplier system, where a single 

item and order-up-to S  inventory policy are 

considered. To simplify the model, excess inventory 

can be returned without cost, and excess demand is 

backlogged. The timing of events during a 

replenishment period is as follows: At the beginning 

of each period t , the retailer order a single item of 

quantity tq  from the supplier. There is a lead time of 

L  periods between ordering and receiving the 

goods. After that, the goods ordered L  periods ago 

arrived. Finally, demand is realized and the available 

stock is used to meet the demand. A serially 

correlated demand process the retailer faces is 

assumed to follow the AR (1) model as, 

ttt DdD ερ ++= −1                             (1) 

where tD  is the demand in period t , ρ  and d  are 

constants such that 0>d  and 11 <<− ρ , and tε  is 

normally distributed with zero mean and variance 
2σ .(Negative demands are negligible when σ  

significantly smaller than d .) 

The exact bullwhip effect 

 Given the unit holding cost, unit shortage penalty 

cost, and the unit ordering cost, Lee et al. (1997a) 

formulated the cost minimum problem to optimize 

retailer’s order tq  and the order-up-to level tS , 

which is the amount in stock plus on order (including 

those in transit) after the decision tq  has been made. 

The optimal order-up-to level 
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cost minimum problem was given by 
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where K  is the level of customer service. From (2), 

the optimal order amount 
*
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 was given by 
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Expression (3) implies if the demand surge happen in 

period )1( −t , then in period t  the retailer will order a 
quantity to bring the inventory back to the original 

level 1−tS , plus an additional quantity to reflect the 

update of the further demands. Symmetrically, lower 

demand observed at the retailer leads to a lower order 

quantity than original lower demand. As a result, the 

variance of customer demands amplifies when 

passed upstream to the supplier. Such a 

phenomenon, called the bullwhip effect, can be 

measured by he ratio of the variance of retailer 

demand, 
*

t
q

, to the variance of customer 

demand, 1−tD : 

),(Var)Var( 1

*

−= tB DqE
t                          (4) 

and can be simply derived as,  
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For a detailed derivation of expression, see Lee et al. 

(1997a). The value for this measure greater than one 
indicates amplified order variability.  

 

 

3   Proposed Procedure 
Procedure of building up a confidence interval 

for B
E

 

Li and Maddala (1996) has discussed the issue of 

how applying the bootstrap technique in an 

autoregressive (AR) context. One commonly used 

approach is to resample residuals, which implies first 

differencing the observed and then applying a 

bootstrap scheme to their residuals to generate the 

pseudo-series. In this paper, we utilize this approach 

to repeatedly generate the pseudo-series of customer 

demand, each of which would be used to calculate 

the 
*ˆ
B

E
 for estimating the exact bullwhip effect BE . 

The procedure to establish a bootstrap confidence 

interval of BE  is summarized as follows. 

Step1.Let nDDDD  , , , , 101 L−  be the successive 

observations from customer demand process, 

satisfying the AR (1) model (see expression 

(1)), and 1−−=∆ ttt DDD , nt  , ,2 ,1 ,0 L=  be 

their differences. 

Step2.Calculate the residuals te , nt  , ,2 ,1 L=  by 

fitting a first order autoregression to tD∆ , 

that is, 
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1 ˆ −∆−∆= ttt DDe ρ ,                                  (6) 

where 
ρ̂
 is the least squares estimator of the 

regression of tD∆  on 1−∆ tD . 

Step3.Generate a pseudo-series of customer demand 
** ,,

1 n
DD L

 as
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where 
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. Here 

*

je , nj ,,2,1 L= , 

obtained by the bootstrap scheme is an iid  sequence 

with e

*

j F̂~e
, where eF̂  is the empirical distribution 

of 
s'te . 

Step4.Calculate the least squares estimator of the 

regression of 
*

t
D

 on 
*

1t
D

− (denoting by 
*ρ̂
), 

and produce an point estimate 
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Step5.Repeatedly do Step 3 to Step 4 until a total of 

f
 point estimate values, 

)(ˆ  ,  ),1(ˆ  ),1(ˆ *** fEEE BBB L , are acquired. Note 

that Ffron and Tibshirani (1986) indicated that 

a rough minimum of 1000=f  is usually 

necessary to compute reasonably accurate 

confidence interval estimates. 

 

4   Illustrative Example 
 
 A simulation study on the behavior of the bootstrap 

confidence interval at 95% confidence level for 

estimating bullwhip effect is presented. Table 1 

illustrates 20 various combinations of lead time 

intervals )5 , ,2 ,1( L=L  and lag-one autocorrelations 

( )8.0 and ,6.0 ,4.0 ,2.0=ρ . 

The exact bullwhip effects corresponding to each 

combination were calculated by expression (4). For 

each combination, a samples of size n =25, 50, or 
100 was drawn from an AR (1) demand process with 

constant 1000=d  and variance 12 =σ  (Note that the 

values of d  and σ  didn’t affect the simulation 

results), and 1000=f  values of 
sE

B
'*

 were 

produced by Steps 1 to 5. Thus, a 95% bootstrap 

confidence interval was able to be constructed by 

each of the three methods (SB, PB, and BCPB) for 

each of sample size, and then determined if the 

bullwhip effect is covered by this bootstrap 

confidence interval. This single simulation was 

replicated 1000=N  times, and run by a computer 

program coded by MATLAB 6.0. One result from 

the simulation is the percentage of times that the 

exact bullwhip effect is covered by the 95% 

bootstrap confidence interval, which is called the 

“coverage percentage”. Another result based on the 

1000=N  trials is the average width of the 95% 

bootstrap confidence interval. 
 

Table 1.Combinations of model parameters and their 

corresponding bullwhip effects 

 
 

On the average length of confidence interval 

Usually, the coverage percentage is the most 

important assessment of a confidence interval 

method, but the width of the confidence interval may 

be also important. 
 

Table 2. The 95 % confidence interval width 

 
 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         579



Table 3.ANOVA for the coverage width of bootstrap 

confidence interval 

 
 

Table 2 displays the coverage percentages for 

95% confidence interval under various combinations 

of model parameters. An analysis of variance 

(ANOVA) table of the width of the confidence 

interval shown in Table 3 is made to study the 

foregoing four main effects. The 
2R  value of the 

four main effects is 0.862. According to the results of 

Table 3, it illustrates that sample size, 

autocorrelation, and lead time are significant to affect 

the interval width. 

 

5   Concluding Remarks 
Processing of non-stationary demand signal is one of 

the main causes resulting in the bullwhip effect in a 

supply chain. Great bullwhip effect would bring 

about increased cost and poor service. In reality, the 

approach to measure the bullwhip effect usually 

relies upon a sample of finite observations from the 

demand process, and the measured value is taken as a 

point estimate of the bullwhip effect. In this paper, in 

estimating the bullwhip effect confidence interval 

estimate is used instead of simple point estimate. In 

doing so, we first calculate the residuals obtained 

from a fitting auto-regression model on demand 

differences, and then apply the bootstrap scheme to 

resampling residuals to generate the pseudo series of 

demands. According to these series of demands, the 

bootstrap confidence interval can be constructed. In 

order to validate its usefulness, we considered a 

simple supply chain structure with a first-order 

auto-regressive AR(1) demand process in our 

simulation study. The simulation results indicate that 

the coverage percentage of bootstrap confidence 

interval for exact bullwhip effect is probably in a 

range from 70% to 95%, which didn’t perform as the 

stated 95% confidence interval, and the width of 

confidence interval increases as the exact bullwhip 

effect increases. In exploring the effects of sample 

size, lag-on autocorrelation coefficient, lead time, 

and bootstrap method on the coverage percentage 

and width of bootstrap confidence interval, two 

observations are found: 

 

(1)For the effect of autocorrelation coefficient, 

highly positive correlated demand data yields a 

lower percentage coverage and lead to a wider 

confidence interval. However, the larger 

confidence interval might be shortened by 

increasing sample size. 

 

(2)For the effect of lead time, a longer lead time 

gives a wider confidence interval. This is because 

that a longer lead time can lead to a larger exact 

bullwhip effect, under which a wider interval 

length is employed. However, the length might be 

shortened when the sample size is increased. 
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