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Abstract: - This paper presents a new approach for optimization and automatic control of reactive power
in distribution feeders and substations. An optimal capacitor placement, sizing, and controlling problem is
formulated objecting to improve voltage regulation and reduce power losses. Characterize and compose the main
contribution of the work, a formulation and methodology to a concomitant search for optimal placement, optimal
placement policy, and optimal control scheme of capacitor banks in distribution systems. These optimal solutions,
provide decision support to reactive power compensation planning in large scale energy companies. Based on
reinforcement learning concepts and sensitivity analysis, the proposed method has been tested in a Brazilian
Central Region real system with preliminary but promising results.
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1 Introduction
Electrical power losses in distribution systems corre-
spond to about 70% of total losses in electric power
systems [1]. These electrical losses can be consider-
ably reduced through the installation and control of
reactive compensation equipments, such as capacitor
banks, reducing reactive currents in distribution feed-
ers. Furthermore, voltage profiles, power-factor and
feeder capability of distribution substations are also
significantly improved.

Computational techniques for capacitor placement in
distribution systems, have been extensively researched
since the 60’s, with several available technical publi-
cations in this research area [2]. Published literature
describes several approaches and techniques to the
problem, standing out the analytic methods, heuristic
methods, numerical programming, fuzzy logic, ant
colony optimization, tabu search [3], neural networks,
genetic algorithms [1] and hybrid methods [4].

Compelled to identify the location, number, size,
type and control scheme for each capacitor to be in-

stalled in a distribution system, the problem is usually
formulated in terms of a combinatorial optimization
problem, where conflicting objectives are considered
as purchase and installation cost minimization of ca-
pacitors banks and electrical losses reduction.

Despite quality and quantity of works on the issue,
established a final outcome and, due lack of human and
financial resources, electric utilities usually implement
gradually intermediate non-optimal solutions to the
problem. In addition, it’s a common practice, espe-
cially in companies with large concession areas and
long feeders, to apply these algorithms in planning sce-
narios studies, regarding different financial constraints
represented by number (or size) limits to capacitors
banks at buses, feeders and/or distribution substations.
Nevertheless, each budget constraints defines a new
combinatorial optimization problem and, not rarely,
these solutions might demand reactive power compen-
sation equipments, unfeasible on a strict technical op-
timal placement solution without budgets constraints.

This paper presents a new approach for optimization
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and automatic control of reactive power in electric
power distribution systems. Characterize and compose
the main contribution of the work, a formulation
and methodology to a concomitant search for optimal
placement, optimal placement policy, and optimal con-
trol scheme of capacitor banks in distribution systems.
The methodology uses reinforcement learning concepts
and algorithms, as well as bus sensitivity-based anal-
ysis with respect to reactive power injections. These
optimal solutions, provide decision support to reactive
power compensation planning in large scale energy
companies. The proposed method has been tested in a
Brazilian Central Region real system with preliminary
but promising results.

The paper is divided into five sections as followings.
Sections 2 and 3 present, a brief introduction to
reinforcement learning paradigm and a description
of proposed approach, respectively. Section 4 shows
preliminary numerical results. Finally in section 5,
conclusions and future research perspectives are
outlined by the authors.

2 Reinforcement Learning
Reinforcement learning (RL) [5] can be described as a
computational approach to learning through interaction
with an environment. In a sequential decision task,
an agent interacts with an environment, by selecting
actions that affect state transitions to optimize some
reward function. Formally, at any given time t, an
agent perceives its state st and selects an action at.
A dynamic system responds by giving the agent some
numerical reward r(st) and changing into state st+1 =
δ(st, at) [6]. The agent’s aim is to find (or to learn)
a policy π : S → A, mapping states to actions, that
maximizes some long-run measure of reinforcement.

π∗ = argmaxπV π (s) ,∀s (1)

where V π(s) is the cumulative reward received from
state s using policy π, called value-function.

The most common approach to learning value func-
tions is the temporal difference (TD) methods. These
methods can learn directly by experience without any
explicit model of environment’s dynamics. Further-
more, they update estimates based on previous learned
estimates, without waiting for a final outcome. Defin-
ing the action-value function

Q (st, at) = r (st) + V π (δ (st, at)) , (2)

it’s possible to set up the update rule of the off-policy
RL algorithm Q-learning [5], on its simplest form.

Q (st, at)← Q (st, at) + α∆Q(st, at) (3)

∆Q(st, at) = U(st+1, at+1)−Q (st, at) + r (st) (4)

U(st+1, at+1) = γ max
at+1

Q (st+1, at+1) (5)

where γ and α denote, respectively, the learning rate
and discount rate of reinforcements along time. In
equation (3), the function Q (st, at) is updated based
on its current value, immediate reward r (st), and the
difference between the maximum action-value at the
next state (finding and selecting the action at the next
state that maximizes it) minus the action-value function
in the current time.

Differing from supervised learning techniques, the
environment is explicitly considered on a trade-off
between exploration and exploitation. The agent must
learn which actions maximize gains in time, but also
how to act to reach this maximization, looking for
actions still not selected or regions not considered in
a state space. As both directives bring, in specific mo-
ments, benefits to problem solutions, the exploration
and exploitation modules are usually mixed.

Let the ε-greedy policy, a policy where the parameter
ε indicates the probability of choosing a random action,
and (1− ε) the probability of choosing the action of
larger expected long-run value of return. Then, the
greedy action a∗t for state st can be obtained according
to equations below [7].

a∗t = argmaxat∈A(st)Q (st, at) (6)

π (st, a
∗
t ) = 1− ε +

ε

|A(s)|
(7)

π (st, at) =
ε

|A(s)|
,∀a ∈ A(s)− {a∗t } (8)

Fundamental for TD methods convergence, the
trade-off between exploration and exploitation as well
as, policy functions π, value functions V , action-value
functions Q, and agent/enviroment interactions, are
reinforcement learning paradigm elements, and have
been used in the development of proposed approach.

3 Proposed Approach
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3.1 Problem Formulation
The capacitor placement problem consists of determi-
ning optimal location, number, size, type and control
scheme of capacitor banks, such that minimum yearly
cost due to power losses and cost of capacitors are
achieved, while operational and power supply quality
constraints are respected.

Mathematically, the problem can be formulated ini-
tially as a combinatorial optimization problem, with
search space size given by Θ(Λ+1)N , where Λ is the
number capacitor sizes, Θ is the number of load levels
under analysis and, N is the number of network buses.

min f (v, z) = fC (v, z) + fL (v, z) (9)

subjected to

g (vm, zm) = 0 (10)

V min ≤ (vm
k ) ≤ V max (11)

where

fC(v, z) =
Θ∑
m

N∑
k

κf,s
C zm

k Cm
k (12)

fL(v, z) =
Θ∑
m

κm
L TmPm

L (vm, zm) (13)

In equations (9), (12) and (13), the objective func-
tion f is divided into costs associated to capacitors
banks (purchase and installation) fC and costs associ-
ated to electrical losses fL (obtained through the cost
coefficient κm

L , for Θ load levels, and electrical losses
Pm

L ). The variable zm
k denotes shunt capacitance exis-

tence at node k for load level m. Equations (10) and
(11) correspond to load flow and voltage magnitudes
constraints, respectively. This last constraint has been
considered through the addition of a penalty factor β
to the voltage deviation as followings:

f (v, z) = fC (v, z) + fL (v, z) + β

N,Θ∑
k,m

φvm
k

(14)

subjected to

g (vm, zm) = 0 (15)

where

φvm
k

=

{
0.01, if V min ≤ vm

k ≤ V max

0.5 abs
(
1− (vm

k )2
)

, otherwise
(16)

Pointing out policy search, financial constraints like-

wise number (or size) limits to capacitors banks at
buses, feeders and/or distribution substations, are not
directly included in such object function formulation.
Conversely, these constraints are considered in aim-
ing for the most profitable ordination for capacitors
placement. In fact, although equation (14) is suited
to optimal location search and control scheme search
of capacitors banks in distribution system, an optimal
capacitor placement policy search is also proposed in
this approach. For this purpose, let s be the placement
state, a bi-univocal function of zmCm, ∀m

−→s = [ ...

m−1︷︸︸︷
‖ ... sm

k−1s
m
k sm

k+1 ...︸ ︷︷ ︸
N

m︷︸︸︷
‖ ... ]ΘN (17)

s = h(−→s ), such that ∃h−1, h : NΘN → N (18)

and let a ∈ A be the action of installing a capacitor
bank of size and type Ct,Θ

k at bus k, ∀k. Hence,
let Q a function representing the expected value of
allocating each capacitors bank, whereas the placement
state s, the optimal placement policy is conveniently
summarized through the equation (19) bellow.

π∗ (s) = argmaxaQ (s, a) (19)

3.2 Methodology
The proposed methodology is based on modeling an
agent objecting to learn and discover the optimal loca-
tion, placement policy, and control scheme of capacitor
banks, by means of try-and-error interactions in an
environment. This environment is defined as the elec-
tric network where the installation of each capacitor
bank is an agent’s action with this environment. Hence,
the optimal placement policy is referred to actions, in
each network status, which maximize a future reward
function obtained until the optimal placement state.
Considering different load levels in problem formu-
lation, this optimal placement state includes also the
optimal capacitor control scheme.

Throughout iterative learning, the optimal placement
state search (that is, the state associated to the optimal
immediate return)

r (st) ≡
1

f (v, z)
(20)

is self–managed by the learning technique, sensitivity-
based analysis, and the use of potential heuristic rules
developed and/or already available for the problem.
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At this point, two heuristic rules are described below.

3.2.1 Immediate Reward Estimation
During the first visit of a placement state, it’s specified
as a directive of the methodology, the choose of the
action associated with the larger expected immediate
reward. Common in applications to the problem, this
procedure requires extensive object function numeri-
cal evaluations. Aiming to reduce the computational
burden required, it’s performed an immediate reward
estimation for each possible action given a placement
state, as followings.

Let sj be the state obtained in time j of agents’ iter-
ative learning. Also let aju

be the action representing
a capacitor bank installation at bus u such that Qm

ju
=

Cm
ju

zm
ju

, for Θ load levels. Moreover, consider now vm
ai

and vm
bi

, the initial and final bus voltages at line i for
load level m. Then the object function obtained for
state sj+1 can be estimated through sensitivity voltage
[8] evaluations, related to reactive power injection, as
shown below.

fj+1 ≈ fj + κf,s
C +

Θ∑
m

κm
L Tm ∂Pm

L

∂Qm
u

∆Qm
u

+ β

N,Θ∑
k,m

φvm
k+1

(21)

where

∂Pm
L

∂Qm
u

=
NL∑
i

2
(
vm
ai
− vm

bi

)
Zi

ab

(
∂vm

ai

∂Qm
u

−
∂vm

bi

∂Qm
u

)
(22)

∂Pm
L

∂Qm
u

=
NL∑
i

2
(
vm
ai
− vm

bi

)
Zi

ab

(
∂vm

ai

∂Qm
u

−
∂vm

bi

∂Qm
u

)
(23)

and

φvm
k+1

=

{
0.01, if V min ≤ vm

k+1 ≤ V max

0.5 abs
(
1−

(
vm
k+1

)2
)

, otherwise
(24)

vm
k+1 ≈ vm

k +
∂vm

k

∂Qm
u

∆Qm
u (25)

3.2.2 Reduction of the Search Space
Sensitivity-based analysis is also performed for reduc-
ing the search space, limiting the search to the η(%)
most sensitive buses in relation to objective function.

3.2.3 Algorithm
Based on TD method Q-learning, the proposed algo-

rithm is outlined below.
1) Read input data (line and bus data) and initialize

parameters and variables.
2) Define search space considering the η(%) most

sensitive buses with respect to objective function.
3) Start with state representing the uncompensated

reactive power status of the electric network.
4) If the placement state is visited for the first

time, choose the action associated with the larger
expected immediate reward. This procedure can
be performed through immediate reward estima-
tion of all possible actions for the placement
state through equation (21). Otherwise, choose
an action under ε-greedy policy defined by the
equations (6), (7) and (8).

5) Obtain next placement state from current state
and current action. States not visited and respec-
tive immediate reward (optionally) are stored in
memory.

6) Update action-value function using equations (3)
and (5).

7) If the immediate reward of next state is smaller
than the immediate return of current state under
greedy action, return to Step 4. Otherwise, go to
Step 8.

8) Update learning rate α and probabilities ε

αiter+1 = max
(
0.95αiter, αfinal

)
(26)

εiter+1 = max
(
0.95εiter, εfinal

)
(27)

9) If the π policy convergence is characterized, go
to Step 10. Otherwise, return to Step 3.∑ ∣∣Qiter (sj , aj)−Qiter−1 (sj , aj)

∣∣ < Ψ (28)

10) Computation and impression of numerical re-
sults.

4 Simulation Results
4.1 Case study description
The proposed approach for optimization and automatic
control of reactive power has been tested in a 13.8
kV, 29-bus Brazilian Central Region real system. The
annual load curves were segmented in three load
levels (light, intermediate, peak) of demand factors and
duration T , specified in Table 1.

Fixed and switched capacitor purchase and instal-
lation costs are shown in Table 2 [9]. Simulations
considered energy losses costs by the coefficient κL =
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Light Intermediate Peak
Demand factor 0.30 1.67 2.00
T (hours/year) 3102.50 4562.50 1095.00

Table 1. Load levels.

0.13380 US$/kWh, for the three load level under
analysis. Upper and Lower bound voltage magnitudes,
according to voltage levels standards in [10], are set
up in V min = 0.93 pu and V max = 1.05 pu. The
parameter β will have been calibrated to represent
Brazilian regulatory penalties. For this preliminary
simulations, β was used as a penalty factor to capacitor
placements associated to high voltage deviation.

Type Size (kVAr) Cost (US$)
600 3091Fixed
1200 3909
0/600 5818

Switched 0/1200 6636
0/600/1200 8455

Table 2. Capacitor costs.

4.2 Result Analysis
After several numerical simulations, penalty factor was
adjusted in β = 100000. Training parameters used on
final outcome are shown in Table 3. The proposed
algorithm presented good convergence and adequate
robustness to variations of these parameter. It’s rec-
ommended initial learning rates values near to unit
(typical values are 0.75 to 0.90), and low final learning
rates (typical values are 0.1 to 0.3). For initial and final
probabilities ε, typical values are 0.2 to 0.3 and 0.01
to 0.1, respectively. In addition, discount rates γ near
to unit (typical values are 0.80 to 0.95), modeling high
influences of long-run reinforcements on state values,
increase significantly algorithm performance.

αinitial αfinal γ εinitial εfinal

0.90 0.20 0.95 0.30 0.01

Table 3. Training parameters.

Table 4 summarizes the optimal capacitor placement
solution, control scheme and policy, resulted for the
application of proposed methodology in the Brazilian
case study described previously. For each step of
the capacitor placement policy solution, are indicated
capacitor type, size, bus location, and control scheme,
obtained.

kVArStep Bus Type
Light Interm. Peak

0 - - - - -
1 29 Fixed 1200 1200 1200
2 28 Fixed 1200 1200 1200
3 26 Fixed 1200 1200 1200
4 24 Fixed 1200 1200 1200
5 21 Fixed 1200 1200 1200
6 20 Switched 600 1200 1200
7 18 Fixed 1200 1200 1200
8 17 Fixed 1200 1200 1200

Table 4. Capacitor placement solution, control
scheme and policy, obtained.

Table 5 shows results for each capacitor placement
policy step in terms of electrical losses PL, capacitor
purchase and installation accumulated cost fac

c , and
object function cost regardless voltage penalty f

′
.

A comparative between uncompensated network and
compensate network is shown in Table 6, considering
additionally the maximum and minimum voltage mag-
nitudes vmin, vmax, and savings Sav obtained.

Step Bus fac
c (US$) PL (kW) f

′
(US$)

0 - - 418.72 296418.66
1 29 3909 395.68 278353.58
2 28 7818 376.22 264086.35
3 26 11727 359.67 252932.30
4 24 15636 345.79 244571.42
5 21 19545 334.18 238575.62
6 20 28000 324.48 238318.58
7 18 31909 316.48 235916.05
8 17 35818 310.02 235274.34

Table 5. Allocation policy results.

Uncompensated Compensated
vmin (pu) 0.929 0.953
vmax (pu) 0.993 1.002
PL (kW) 418.72 310.02
f

′
(US$) 296418.66 235274.34

Sav (US$) 61144.32

Table 6. Reactive compensation effect.

As observed in tables above, capacitor installation
at this distribution feeder performs meaning electrical
losses reduction and voltage profiles improvement.
The solution indicated installation and purchase of
seven 1200 kVAr type fixed and one 0/600/1200 kVAr
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type switched-capacitor bank. Total losses without any
compensation is found to be 418.72 kW. After compen-
sation, the total losses is 310.02 kW, equivalent 26%
reduction. Savings are estimated to be US$ 61144.32.

From policy placement solution, electric utilities
can set up a compensation strategy, differentiated in
steps, leading to optimal capacitor placement state,
minimizing losses, purchase and installations costs.
For example, given an annual budget for system im-
provements of US$ 16000, policy solution indicates
the purchase and installations of four 1200 kVAr type
fixed-capacitors banks (Steps 1 to 4 in Table 5), as
the optimal strategy to reactive power compensation.
Futhermore, policy placement solution can aid in bud-
getary assessments for system improvements.

Finally, preliminary results of proposed approach
applied to a real system suggest effectiveness and
robustness in power distribution systems optimization
problems. Problem formulation and solution, provide
decision support to reactive power compensation
planning in large scale energy companies.

5 Conclusion
A new methodology for optimization and automatic
control of reactive power in distribution systems is
proposed in this article. The capacitor placement policy
search was approached to provide decision support
to planning compensation in large scale energy com-
panies. Based on reinforcement learning concepts, a
formulation to a concomitant search for optimal place-
ment, optimal placement policy, and optimal control
scheme of capacitor banks in distribution networks was
presented. In fact, the reinforcement learning technique
showed effectiveness in landscape combinatorial opti-
mization problems. Sensitivity-based analysis improve
the proposed method adding knowledge to the model
and speeding up simulations.

The designed algorithm was applied in a Brazilian
Central Region real system to improve voltage profiles
and reduce electric power losses. Preliminary results
pointed up good performance and robustness in power
distribution systems optimization problems.

Future work needs to be carried out with regard to
the following issues: nonlinear and unbalanced loads,
annualized maintenance costs, meta-heuristic methods
hybridism.
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