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Abstract : -  We present the design of two dimensional finite impulse response(FIR) signal 
adapted filter banks for an input signal whose power spectral density is separable. One 
dimensional FIR filters are designed for each of the separable components using iterative 
greedy algorithm. The first and last filters in this 2D filter bank are found to be separable and 
matching closely with ideal ones .The remaining filters are nonseparable and time varying. 
Since most of the input signal energy is packed in the first subband this design method is 
useful in optimal representation of images. 
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1. Introduction 
The optimal multiresolution 

analysis of signals and images can be done 
effectively using principal component 
filter banks (PCFB). A PCFB is a type of 
filter bank that minimizes the mean 
squared error between the input and any 
low resolution approximation of it. They 
are known to be optimal for data 
compression. In addition to this, they offer 
optimal solutions to many problems in 
communication and signal processing 
under certain theoretical assumptions. The 
uniform 1D PCFB was introduced by M 
Tsatsatsanis et al[1]. Its existence, design 
and optimality results for various 
objectives in communication were studied 
by P P Vaidyanathan et al[2]. 

One Dimensional PCFBs was 
generalized to higher dimensions by 
B.Xuan and Robert H Bamberger[3]. They 
had also developed 2D FIR PCFB using 
Roesser state-space representation of a 
paraunitary (PU) FIR polyphase matrix[4]. 
According to Farshid Delgosha et.al. the 
drawback  of this representation is the 
resultant complicated algorithm and lack 
of a ready-to-use realization [5]. 
Traditional design methods for 1D 
compaction filters[6] cannot be extended 
to higher dimensions directly due to the 

lack of  multidimensional (MD) spectral 
factorization theorem. 

The use of nonseparable filter 
banks in image processing applications is 
due to the fact that it would capture the 
geometrical features in the image such as 
lines, edges and textures. The optimization 
algorithm for 1D [7] can be extended to 
2D nonseparable filter banks, but the 
factorization for 2D PU matrix does not 
cover the whole family of such 
matrices[8]. Furthermore, the problem 
with nonseparable 2D filterbank is mainly 
the design complexity. 

In this paper we design 2D FIR 
signal adapted filter bank using iterative 
greedy algorithm for 1D signals which is 
of less computational complexity. If the 
power spectral density (psd) of a 2D signal 
Sxx(ω1,ω2) can be approximated as the 
product of two separable components, 1D 
FIR filter bank can be designed for each 
separable component and then form 2D 
FIR filter bank from them. The first and 
last subband filters in this 2D filter bank 
are found to be separable, others 
nonseparable and time varying. The main 
advantage of this approach, is the reduced 
computation work load associated with 
optimization and low implementation cost. 
The filter bank in this case is assumed to 
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be maximally decimated and orthonormal 
i.e., polyphase matrix E(z) satisfies  

  E(z)†E(z)=I                             (1)                               
The paper is organized as follows. 

Notion of one dimensional and two 
dimensional uniform PCFBs are outlined 
in section 2. Section 3 describes the design 
of 2D PU signal adapted filter banks from 
1D filter bank using iterative greedy 
algorithm. Section 4 gives simulation 
results.  

2. Principal Component filter 
banks 
 
2.1 One dimensional uniform PCFB  
  A filter bank in a class of uniform 
orthonormal M- channel filter banks is 
said to be a PCFB for the given input psd, 
if its subband variance vector majorizes 
[9] the subband variance vector of all other 
filter banks in that class. They are optimal 
if the minimisation objective is a concave 
function of the subband variance vector. 
The existence of PCFB depends both on 
the class and the input psd [2]. 
 The PCFB for a given input signal 
x(n) can be constructed by comparing the 
values of its psd Sxx(e

jω) at M alias 
frequencies, ωk=ω+2πk/M, where M is the 
number of channels in the filter bank and  
0 ≤ k≤ M-1[10]. The polyphase matrix of 
the optimal filter bank diagonalizes the M 
fold blocked psd matrix of the input signal 
given by 
SXX(ejω)= 
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Since the majorization property is 

a necessary condition for optimality, the 
eigen values of the blocked matrix are 
arranged in descending order for each ω. 
Hence the polyphase matrix of a PCFB 

can be computed from the corresponding 
eigen vectors Vk(e

jω) of the blocked psd 
matrix. From (2) it can be seen that the 
shape of the input spectrum affects only 
the eigen values of SXX(ejω), and not the 
eigen vectors. The eigen values of the 
blocked psd matrix at any frequency ω are 

the values of  Sxx )( /)2( Mkje πω−
, 

where 0 ≤ k≤ M-1 
2.2 Two dimensional uniform PCFB 

Most of the results on 1D filter 
banks  can be generalized in a straight 
forward manner to 2D systems. Let the 
column vectors n=[n1 n2]

T, z =[z1,z2]
T, 

ωωωω=[ω1,ω2]T  denote 2D  variables. If x(n) 
is a wide sense stationary(WSS) process 
with psd Sxx(ω) and M is a 2×2 
nonsingular integer matrix referred to as 
resampling matrix, 2D PCFB can be 
constructed by comparing the values of 
Sxx(ω) in the set 
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 where P=J(M)=|det(M)| is the resampling 
density and N(M) is the set of all integer 
vectors in the fundamental parallelepiped 
(FPD) generated by M, i.e. 

{ }MxkkMN MM ∈= |)(  where 

[ ] )[ 1,0,1,0,10 =∈= ixxxx i
T .   

Similar to one dimensional PCFB 
the spectral density matrix can be written 
as 
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The eigen values of the blocked 

psd matrix at any ω are the values of 

)()),2(( T
ii

T
xx MNuuMS ∈−− πω . The 

eigen vectors of the blocked psd matrix 
can be used to compute the polyphase 
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matrix of PCFB since it diagonalises the 
psd matrix. 

Let the input psd Sxx(ω) be 
separable i.e.,  

Sxx(ω)=S1(ω1)S2(ω2).               (6) 
 Then the power spectrum matrix 

can be written as the kronecker product of 
1D psd matrices. 
          SXX(ω)=S2(ω2) ⊗ S1(ω1)             (7)                         

Since the spectral density matrix is 
positive definite and Hermitian, it has a 
unitary diagonalization[9] given by 

 S1(ω1)=t1λ1t1
†.                        (8)                                                          

where λ1 consists of positive eigen values 
and t1 consists of normalized eigen 
vectors. Similarly  

S2(ω2)=t2λ2t2
†                          (9)                                                            

Substituting (8) and (9) in (7) gives 
 

†
121212 ))()(()( tttt ⊗⊗⊗= λλωXXS  (10) 

                                               
λ = λ2 ⊗  λ1 results in a diagonal matrix 
with diagonal values as the product of 
eigen values of  the matrices S2(ω2) and 
S1(ω1) which in turn depends on the values 
of, S2(ω2) and S1(ω1). Hence the diagonal 
values of λ, except the first and last, need 
not be arranged in descending order at all 
frequency points, even though diagonal 
values of λ1 and λ2 are arranged in 
descending order. Therefore t2 ⊗  t1 

diagonalizes SXX(ω), but it will not act as 
the  2D polyphase matrix of PCFB for any 
general psd. If the psd of input signals are 
such that diag(λ) are arranged in 
descending order at all frequency points,  
t2 ⊗  t1 will be the polyphase matrix of 
PCFB. Then all the filters will be 
separable. For a general psd, only the first 
and the last filters in the PCFB will be 
separable. The other filters Hk(z), 1 ≤ k ≤ 
P-2 can be obtained from 1D PCFBs 
derived from S2(ω2) and S1(ω1), whose 
eigen values form the kth larger eigen 
value of SXX(ω). They will be time 
varying, but at each frequency point they 
will be separable[11]. 
 

3. Design of 2D FIR PU signal 
adapted filter banks 
 

We design 2D FIR signal adapted 
filter banks by designing 1D filters for the 

two separable components of 2D psd, 
SXX(ω). The resampling is separable if M 
is diagonal. The resampling matrix used in 
2D system is M = diag(M1,M2) .The 1D 
FIR filter banks are designed for  
decimation factors M1 and M2, using 
iterative greedy algorithm [7]. 
3.1  Design of 1D FIR PU signal 
adapted filter banks 

Let D(ω) be the analysis 
polyphase matrix of the infinite order 1D 
PCFB for the blocked psd, S1(ω1) and 
E(ω) be the polyphase matrix of the 1D 
FIR PU filter bank to be designed for a 
decimation factor M1. E(ω) is 
approximated with D(ω) by minimizing 
the weighted mean-squared Frobenius 
norm error between D(ω) and E(ω) given 
by    

ωωωω
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To solve this optimization problem , with 
the PU constraint , the FIR  polyphase 
matrix E(ω)  is parameterized using the 
Householder –like building blocks. 
                E(z)=V(z)E0                       (12)  
where V(z) is a M1×M1 PU matrix 
consisting of N-1 degree one Householder 
–like building blocks of the form 
                                           

)()(
1

1

zVzV
Ni

i∏
−=

=                               (13) 

                                                   

11)( 1 −≤≤+−= − NivvzvvIzV iiiii
††††††††

   

                                                             (14)   
where vi are unit norm vectors. E0 is a 
M1×M1 unitary matrix. Each parameter is 
individually optimized at each iteration 
holding all other parameters fixed. 
 Since the desired response D(ω) 
suffers from a phase ambiguity, a 
modification to this iterative algorithm 
named as phase feedback modification[7] 
is applied in this design. The phase of each 
column of the FIR PU polyphase matrix 
E(ω) is fed back to that of the desired 
response in order to minimize the mean 
squared error. The mean squared error is 
found to be small with this modification 
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and the FIR response becomes closer to 
the ideal one. 
 
3.2   2D FIR filters from 1D filters 
The 2D filters Hk(z), k = 0, P-1 can be 
calculated from 1D filters as 
                          

)()()( 2101000 zHzHH =z        (15) 

                                                                         
)()()( 2111101 21

zHzHH MMP −−− =z   (16)                                          

where H00(z1), )( 110 1
zH M −  are the 1D 

filters designed for an input psd S1(ω1) and 
H10(z2), )( 211 2

zH M − are the 1D filters for 

S2(ω2) respectively. For a general psd, the 
remaining filters Hk(z), 1 ≤ k ≤ P-2 can 
also be calculated from 1D filters as  

 
10,10

),()()(

2211

2110 21
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MmMm

zHzHH mmk z
       (17)      

The filters ,,
21 10 mm HH  are selected 

depending on the eigen values of S1(ω1) 
and S2(ω2) which form the kth larger eigen 
value of  SXX(ω) at each frequency point. 
So these filters are found to be time 
varying. This is the disadvantage of this 
approach. But this design may be useful in 
the optimal representation of images by 
lower resolution versions of them due to 
the energy compaction even in the first 
band. 

In  image processing, the images 
are generally  modelled as a 2D  random  
stationary field. A random field with 
nonzero mean can always be transformed 
to a zero mean random field by subtracting 
the mean from it. The autocorrelation 
function of a random field is called 
separable when it can be expressed as a 
product of one dimensional 
autocorrelation functions. A separable 
stationary autocorrelation function often 
used in image processing [12] is 

     

r(m,n)= 1,1 2121
2 << ρρρρσ nm

       
                                             (18) 
 

Here σ 2
 represents the variance of the 

random field and 
2

2
2

1 /)1,0(,/)0,1( σρσρ RR == are the 
one-step correlations in the m and  n 

directions, respectively.The corresponding 
spectral density function of a stationary 
random field can be written as  
        Sxx(ω1,ω2)=
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substituting for r(n1,n2) from (18) 
     Sxx(ω1,ω2)   
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Now the one dimensional filters 

,10,)( 1110 1
−≤≤ MmzH m

10),( 2221 2
−≤≤ MmzH m are designed 

for S1(ω1) and S2(ω2) respectively, using 
the algorithm described in section 3.1 

 
 

4. Simulation results 
 We design FIR PU 2D PCFB-like 
filter bank for a real WSS (mean zero)  
input signal x(n) with psd Sxx(ω) as shown 
in Fig 1.,  which is separable. The 

 
Fig.1 Input psd Sxx(ω) 
 
resampling matrix used is M=diag{2,2}. 

Each filter of the filter bank is 
designed for a length of  8×8.  Fig. 2 and 
Fig.3. show the magnitude squared 
response of the subband filters of the 
designed FIR PU PCFB-like filter bank 
and that of the PCFB for P = |det(M)| = 4. 
The input signal energy compacted in the 
subband filters of   FIR filter bank is 
calculated and it is shown in Table1. 
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98.54% of the energy stored in the first 
subband filter of PCFB is packed in that of 

  

 
(a) (b) 

Fig.2(a) magnitude squared responses 
of the first subband filter of PCFB and 
designed FIR filter bank (b) responses 
of fourth subband filter 
 
 

 
(a) (b) 

 
 
Fig.3(a) magnitude squared responses 
of the second subband filter of PCFB 
and designed FIR filter bank (b) 
responses of third subband filter 
 
 

 

 
 

Fig.4(a) original image (b) reconstructed 
image 

the FIR filter bank. As the order of the 
filter is increased, its response approaches 
closer to that of PCFB. We applied this 
algorithm to a test image “Lena” and a 
four channel FIR optimal filter bank is 
designed for a filter length of  8×8. Using 
the first filter of the optimal filter bank, the 
subband image is generated which is then 
used to reconstruct the original image. The 
reconstructed image along with the 
original image is shown in  Fig. 4 
 

 

Subband variances 2iσ  Index for 
channel 
number i FIR PU Filter 

bank 
PCFB 

0 0.5066 0.5141 
1 0.3177 0.3638 
2 0.2472 0.2788 
3 0.2055 0.2007 
Table 1 subband variance of FIR filter 
bank and PCFB for an input psd of 
0.3394 

The psd of a 2D signal can be 
approximated very closely as the product 
of separable components. If this is 
possible, this design procedure may be 
adopted in image analysis for getting a 
low resolution version of images from 
large databases. 

 
 

5. Conclusion 
We have designed 2D FIR PU, 

PCFB-like filter banks for a 2D psd, which 
is separable, using iterative greedy 
algorithm. The first and last filters in this 
filter bank are found to be separable and 
matching closely with the ideal ones. The 
other filters  are nonseparable and time 
varying for a general psd. But they can be 
time invariant also, depending on the input 
psd. The main advantage of this approach 
is the reduced design complexity 
compared to the design of nonseparable 
filter banks. 

 
 

References 
[1]M.Tsatsatsanis and G.Giannakis, 
“Principal component filter banks for 
optimal multiresolution analysis”,IEEE 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         122



Transactions on Signal Processing, 
vol.43,pp 1766-1777, Aug 1995 
[2]Sony Akkarakkaran and P. P. 
Vaidyanathan, "Filter bank optimization 
with convex objectives and the optimality 
of principal component forms", IEEE 
Trans. SP. vol 49  no.1 pp 100-114, Jan 
2001 
[3]Bo Xuan and Roberto H.Bamberger, 
“Multidimensional, Paraunitary Principal 
Component Filter Banks”, IEEE 
Transactions on Signal Processing, 
vol.46,no.10, October 1998 
[4]Bo Xuan and Roberto H.Bamberger, 
“FIR Principal Component Filter Banks”, 
IEEE Transactions on Signal Processing, 
vol.46,no.4,April 1998 
[5] Farshid Delgosha and Faramarz Fekri, 
“Results on the Factorisation of 
Multidimensional Matrices for 
Paraunitary Filterbanks over the Complex 
field”, IEEE Transactions on Signal 
Processing, vol.52, no.5, May 2004 
[6] Ahmet Kirac and P. P. Vaidyanathan, 
“Theory and design of optimum     FIR 
compaction filters,” IEEE  Trans. Signal 
Processing, vol. 46,    no. 4,    pp. 903-919, 
Apr. 1998. 
 [7].P.P.Vaidyanathan and Andre 
Tkacenko, "Iterative Greedy Algorithm for 

solving the FIR Paraunitary 
Approximation Problem”, IEEE 
transaction on signal processing, 
vol.54,no.1,pp 146-160,Jan 2006 
[8]S.Venkataraman and B. Levy, “A 
comparison of design methods for 2-D FIR 
orthogonal perfect reconstruction 
filterbanks”, IEEE  Trans. on Circuits 
Systems II, Vol. 42, pp 525-536, Aug 
1995 
[9] R. A. Horn and C. R. Johnson, Matrix 
Analysis. Cambridge, U.K: Cambridge 
Univ. Press, 1985. 
[10]P.P.Vaidyanathan, “Theory of 
Optimal Orthonormal Subband 
Coders”,IEEE transactions on Signal 
Processing, vol.46,no.6,pp 1528-
1543,June 1998. 
[11]Andreas Tirakis, Anastasios 
Delopoulos and Stefanos Kollias , “Two-
Dimensional Filter Bank Design for 
Optimal Reconstruction Using Limited 
Subband Information”, IEEE Transaction 
on image processing, Vol. 4, No 8, August 
1995. 
[12] A.K. Jain, Fundamentals of Digital 
Image Processing, Englewood Cliffs, 
NJ:Prentice-Hall,1989 

 
  
 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         123


