
Processing and recognition of characters in container codes ∗

JUAN ROSELL
GABRIELA ANDREU

ALBERTO PÉREZ
Universidad Politécnica de Valencia

DISCA
Camino de Vera s/n,Valencia 46022

SPAIN

Abstract: This paper describes the process of location and recognition of container code characters. The system
has to deal with outdoor images. Top hat transformation, segmentation algorithms and filters have been applied in
order to locate the container’s registration number. Our aim is to obtain a list of characters which contains all, or
as much as possible, characters of the container’s registration number in order to recognize them. This work is part
of a higher order project whose aim is the automation of the entrance gate of a port.

Key–Words:computer vision, segmentation, character recognition.

1 Introduction

Currently in most trading ports, gates are controlled
by human inspection and manual registration. This
process can be automated by means of computer vi-
sion and pattern recognition techniques. Such a pro-
cess should be built by developing different tech-
niques, such as image preprocessing, image segmen-
tation, feature extraction and pattern classification.
The process is complex because it has to deal with out-
door scenes, days with different climatology (sunny,
cloudy...), changes in light conditions (day, night) and
dirty or damaged containers. Digits and characters
may be clear and/or dark and some may appear framed
to distinguish them from the rest of the code.

A first approach to the process of code detection
is presented in a previous work [1] and the overall pro-
cess is discussed also in [2]. In these works, authors
use a morphological operator called top hat [3] to seg-
ment the images of containers. Though this method
had good results, we tried to improve its performance.

The task of finding the best segmentation method
of an specific application is still a difficult challenge.
We have the classical definition of segmentation of an
imageI defined as a partition of the image into com-
ponents which verify thatCi ∩ Cj = ∅ ∧ i 6= j and
that

⋃

Ci = I. In [4] we compared the performance of
four segmentation algorithms applied to images con-

∗Acknowledgements:This work has been partially supported
by grant FEDER- CICYT DPI2003-09173-C02-01.

taining truck containers. In that work, our segmenta-
tion was based on applying the classical definition of
segmentation to an image, varying the algorithm’s pa-
rameters and using two or more techniques at a time
on the same image, in an effort to reduce errors.

Our input data are grayscale imagesI, being
f(x, y) the gray level of pixel located in coordinates
(x, y). Our goal is to segment the imageI into a set
of objects which contain the container’s code.

Formally, we represent asθ(I, S, ki) the set of
objects obtained as result of applying the segmenta-
tion methodS to imageI with a certain set of pa-
rameter valueski. The setki may be empty if the
segmentation techniqueS has no parameter. The set
θ(I, S, ki), will contain either relevant and irrelevant
objects for our search of the code. Givenθ(I, S, ki) =
{p0, p1 . . . pn} where eachpj is determined by a min-
imum rectangle that encloses the object contained in
the region. This rectangle is defined by two corners,
beingcsj the top left corner andcfj the bottom right
corner. It is trivial to deduce that givencsj = (xj , yj)
then we will have thatcfj = (xj +mj, yj +nj) where
mj, nj ∈ N , also that the size of this minimum rect-
angleRpj

enclosing objectpj is mj × nj .
As we mentioned above, our final segmentation

of an image, will be the result of adding previous seg-
mentations of the same image with different values
in the algorithm’s parameters. If we consider a set
of parametersK as K = {k0, k1 . . . kq} in a seg-
mentation process, we will obtain a set of objects

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 62

Υ(I, S,K) =
⋃q

i=1 θ(I, S, ki) which will be the re-
sult of the final segmentation.

However, this setΥ(I, S,K) contains objects
which are irrelevant for our search of characters, and
we need to define a way to clean up these objects.
The way is to implement filters. Applying a filter to
Υ(I, S,K) means subtracting a determined set of ob-
jects∆ from Υ(I, S,K), such that∆ ⊆ Υ(I, S,K)
where∆ = {p ∈ Υ(I, S,K) : σ(p) = 0}. We call
the functionσ(p) the filtering function, which will be
a mapΥ(I, S,K) → {0, 1}. If we have a family of
filters Σ, we can define the final set, result of the seg-
mentation and the filtering as:

Γ(I, S,K,Σ) = {Υ(I, S,K) −
⋃

∆σi∈Σ}
Abusing notation, we will call this setΓ(I, S,K).

In this paper, we explain which filters we used to re-
move this useless regions.

Authors of [5], present an investigation which is
currently under development. The aim of the authors
of this paper is to use the optical flow in order to shrink
the area where the container code could be found and
speed up the segmentation process. However, this
method has proved to be time consuming, and cur-
rently efforts are done in order to optimize it. In a
future, we expect both investigations to merge.

We have organized the paper as follows, in section
2 we describe the complete process that we follow to
extract the characters from pictures, in section 3 we
will describe the data we used, in section 4 we de-
scribe he experiments done; in section 5 we show the
results we obtained in the experiments and in section
6 we discuss our conclusions.

2 Process
We propose a process to extract and identify charac-
ters in images representing truck containers that can
be divided in the following four phases (see figure 1):

Figure 1: The recognition process step by step.

• step 1. Pre-process the image by applying the
top-hat technique for clear and for dark levels.
After this step, we have two different images
Iwhite andIblack.

• step 2. Apply a segmentation algorithm to each
one of the images resulting of the previous step.

We look for clear characters in the image result
of applying the white top hat and, we look for
dark characters in the result of black top hat.

• step 3. Filter the output of the segmentation al-
gorithm for each image.

• step 4. Decide whether characters in the origi-
nal image were clear or dark based on the num-
ber of objects left in each setΓ(Iwhite, S,K) and
Γ(Iblack, S,K).

2.1 Top hat operator
In our task, we have to deal with clear and dark char-
acters. Top hat is a useful operation for enhancing
details when there are shadows. Let I be a grayscale
image and b an structuring element (SE). The opening
and closing grayscale operations are defined in terms
of erosions and dilations as:

ω(f(x, y)) = max(i,j)∈b(min(i,j)∈b(f(x + i, y + j)

− b(i, j))) (1)

φ(f(x, y)) = min(i,j)∈b(max(i,j)∈b(f(x + i, y + j)

+ b(i, j))) (2)

The tophat transformation ([3],[6]) consists on us-
ing knowledge about the shape characteristics that are
not shared by the relevant image structures. Relevant
structures can be removed by opening and closing op-
erations with a SE that does not fit them. White tophat
is defined asWTH(I) = I − ω(I) and black tophat
asBTH(I) = φ(I) − I.

2.2 Filters
In this section, we explain the filters we used. They
are introduced in the same way they are applied in the
process.

2.2.1 Shape filter

This filter removes all those regions which do not
fit to the expected dimensions of characters (height
and width measured in pixels). It is executed first
because it is the filter that can remove more objects
and one of the fastest to be applied. For each object
p ∈ Υ(I, S,K) whose enclosing rectangle isRp. We
define the filtering function as:

fshape(p) =











1 if height(Rp) ∈ [20, 50]
∧ width(Rp) ∈ [6, 30]

0 any other case

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 63

where, the functionsheight(Rp) andwidth(Rp)
return the height and width respectively of the rectan-
gleRp. Formally, we can define this filter as:

∆shape = {p ∈ Υ(I, S,K) : fshape(p) = 0}

2.2.2 Contrast filter

This filter gets rid of objects whose contrast is too
low. Regions which do not show enough variability
are removed. If we define the variance of each object
p ∈ Υ(I, S,K) as µ(p) we can define the filtering
function as:

fcontrast(p) =

{

1 if µ(p) > 15
0 any other case

and the set∆contrast as:

∆contrast = {p ∈ Υ(I, S,K) : fcontrast(p) = 0}

2.2.3 Classifier based filter.

This filter labels each element in the list of objects by
using a k-Nearest Neighbours classifier. We trained
the k-NN classifier with symbols extracted from real
images of truck containers. We obtained these sym-
bols from the images by segmenting automatically
each image and labelling each symbol by hand. We
assigned a class to each character up to a total of36
classes (letters and numbers), and an extra class for
noise. Considering noise as an extra class is important
because, though contrast and shape filter do get rid of
most objects which are not valid, there still remains
a big amount of objects which are not characters. By
applying the classifier only trained with characters, we
would label these invalid regions as character and they
are not. Noise class allows us to improve the recog-
nition step by labelling regions of the image as noise.
Once the classifier has labelled all objects, all those
which end up labelled as noise are removed from the
list.

A function class(p) models the k-NN classifier,
returning a symbol for eachp ∈ Υ(I, S,K) or RR
for objects classified as noise. The filtering function
fnoise(p) will be defined as:

fnoise(p) =

{

0 if class(p) = RR

1 any other case

and the set∆noise as :

∆noise = {p ∈ Υ(I, S,K) : fnoise(p) = 0}

2.2.4 Fusion filter

As segmentation algorithms were applied to images
varying their parameters, more than one object was
found with similar coordinates corresponding to the
same character in the code. This filter fused into one
all those objects which presumably represented the
same character in the code. For a given pair of rectan-
glesRp andRq enclosing objectsp and q, p ∧ q ∈
Υ(I, S,K) we define their intersectionRp

⋂

Rq as
the percentage of surface thatRp overlaps onRq. We
define then the filter’s function as:

ffusion(p) =











0 if ∃ q ∈ Υ(I, S,K) : Rp

⋂

Rq ≥ 0.65
∧ p 6= q

1 any other case

and the set∆fusion as :

∆fusion = {p ∈ Υ(I, S,K) : ffusion(p) = 0}

This filter is applied after the classifier to avoid
fusing objects which will end up labelled as noise with
objects labelled as a character or a number.

2.2.5 Confidence criterion

This criterion counts how many objects in the result
setΥ(I, S,K) have a confidence given by the classi-
fier over80%. This gives us an indicator of the global
confidence of the objects in the result set, the more ob-
jects with a high confidence, the higher the probabil-
ity the set contains the code characters. The function
confidence(p) for p ∈ Υ(I, S,K) can be calculated
as:

confidence(p) =
votes

neighbours

Wherevotes is the number of votes of the label
assigned top by thek-NN classifier andneighbours
is the number of neighbours that voted,neighbours
must be bigger than 1. The set associated to this crite-
rion is simply:

Ξ(I, S,K) = {p ∈ Υ(I, S,K) : confidence(p) > 0.8}

Recalling figure 1, the process can be seen as:
given an imageI, we pre-process it by applying
tophat, we will callIwhite to the result of applying the
white tophat toI andIblack to the result of applying
black tophat toI. We then apply a segmentation tech-
niqueS to Iwhite and toIblack with a set of parameters
K, and produce two result sets,Υ(Iwhite, S,K) and
Υ(Iblack, S,K).

Applying the filters to these two sets we get:

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 64

Γ(Iwhite, S) = Υ(Iwhite, S,K) − ∆shape

− ∆contrast − ∆classifier

− ∆fussion) (3)

Γ(Iblack, S) = Υ(Iblack, S,K) − ∆shape

− ∆contrast − ∆classifier

− ∆fussion (4)

We use the uniformity criterion to decide which
is the correct set. If|Ξ(Iwhite, S)| > |Ξ(Iblack, S)|
we will decide that characters were white, if
|Ξ(Iblack, S)| > |Ξ(Iwhite, S)| we will decide
that characters were black, and in the case that
|Ξ(Iblack, S)| = |Ξ(Iwhite, S)| we can decide noth-
ing.

3 Data
We used1275 real images to perform our experiments.
These images represent truck containers and have a
size of720 × 574 pixels in gray levels. They were
acquired under real conditions in the admission gate
of the port of Valencia; in several days under different
light conditions. Digits and characters can be clear or
dark and they appear in both plain and non-plain sur-
faces. We selected randomly a set from a large amount
of pictures and assured all variability was represented
in this set of pictures (sunny or cloudy days, daytime
or night-time, damaged containers...).

4 Experiments
We used three well known segmentation algorithms
in our experiments: LAT ([7]), Watershed ([8]) and
Thresholding.

4.1 Watershed
Algorithm proposed in [8]. It takes a gray scale image
and considers it as a topographic surface. A process
of flooding is simulated on this surface; to avoid the
merging of two or more floods coming from different
basins, dams are built on the points where the waters
meet. At the end, dams define the watershed.

4.2 LAT
Algorithm proposed by Kirby and Rosenfeld in [7]. It
takes a grayscale or colour image as input and out-
puts a binary image representing the segmentation.

For each pixel in the image, a threshold is calculated.
If the pixel’s value is below the threshold it is set to
the background value, otherwise it assumes the fore-
ground value; or viceversa.

4.3 Thresholding
The input is a gray level image and the output
is a binary image representing the segmentation.
Each pixel in the image is compared with a given
threshold k which is a gray level. If the pixel’s
value is below the thresholdk, the pixel pi is set
to, say, black in the output; otherwise it is set to white.

We made comparisons of these algorithms seg-
menting images representing truck containers and
shew results in a previous work ([4]). As in this work,
we made experiments with these algorithms on their
own and also merging the results of applying more han
one to the same image. Depending on the algorithm, it
had to be applied several times to each image, varying
its parameters in order to cover all possible situations.

Also, they had to be executed twice, once seeking
for clear characters and again, seeking for dark char-
acters. This was done this way, because segmentation
algorithms were not provided with concrete informa-
tion about each image (illumination, number of char-
acters...).

A k-Nearest Neighbours classifier was trained us-
ing 654 real images of trucks what means a total of
9810 characters. We gathered288 features repre-
senting gray levels from each normalized character
(12 × 24 pixels). We applied PCA ([9]) to reduce
the dimesionality of data, and at the end, only60 fea-
tures were used. When classifying objects with k-NN
neighbours, we usedk = 3. The contrast value was
calculated experimentally and we tried to set it low
enough as to not lose shady characters.

In order to extract conclusions about the perfor-
mance of the process we labelled by hand all charac-
ters in the images. We made this by drawing the in-
clusion box of each character in the image and assign-
ing it an alphanumeric label. An example is shown
in figure 2. As a result of this labelling, we had the
number of code characters, the coordinates of the in-
clusion boxes and the label of each code character of
each image.

By applying the recognition process to each im-
age we obtained a list of found objects. These objects
correspond to connected regions with equal gray in-
tensity levels, which had gone successfully through
the different filters.

Experiments were made in a similar way as pro-
posed in [4]; we considered the algorithm had done a
hit if the inclusion box it had calculated and the man-

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 65

Figure 2: Inclusion boxes drawn by a human operator.

ually labelled inclusion box overlapped one on each
other in a certain percentage and both labels matched.

5 Results

Recalling figure 1, it may be seen that in the recog-
nition process each step depends on the output of the
previous one, so, errors accumulate from one step to
another. It is easily seen, that the whole process will
be influenced by the possible failures that may appear
in each step.

In [4] we checked the performance of the segmen-
tation algorithms. Now, we show results for the com-
plete process. We made experiments with309 images.
The results are shown in figure 3a and in table 1, first
row contains the number of images for each segmen-
tation algorithm successfully recognized. Remaining
rows show recognition results for the complete pro-
cess depending on the segmentation algorithm used,
are ordered according to the number of missed char-
acters.

Missed characters LAT Wat. Thr.

0 25 13 22
1 55 25 39
2 47 37 46
3 55 44 40
4 28 49 39
5 26 38 29
6 14 27 19

more than 6 59 76 75

Missed characters LAT Wat. Thr.

0 48 13 41
1 62 35 69
2 62 35 52
3 41 36 32
4 17 33 23
5 14 28 28
6 16 36 21

more than 6 52 96 46

Table 1: Performance of the recognition process.
Above, results with the first classifier. Results with
the improved classifier are shown below.

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 im

ag
es

Missed characters

Watershed
LAT

Thresholding

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 p

ic
tu

re
s

Missed characters

Watershed
LAT

Thresholding

(b)

Figure 3: Cumulative plot of images according to the
number of missed characters by the complete process.
a) Results with the first classifier. b) With the second
one.

We trained a new classifier with more instances
in the hope of improving results. We improved the
classifier with the misclassified objects of the first set
of experiments. It was trained now with a corpus of
963 images. We repeated the experiments with a new
set of312 images. Results are shown in figure 3b and
in table 1. By comparing results of both experiments,
it may be seen that improving the classifier improves
results.

We present a process for detecting the registration
number of truck containers based on segmentation al-
gorithms,k-NN classifiers and filters. We used im-
ages selected randomly from a large set of real images,
and compared the performance of the recognition pro-
cess against the results given by a human operator.
Our effort was driven by the fact that we wanted to
adjust the process, in such a way, that we did not miss
any character (or the lowest possible amount) in the
registration number. Our evaluation of the different
solutions then penalties the lose of characters.

We made experiments with different classifiers
and different segmentation algorithms. We concluded
that the solution that better fits our needs would be
taking together LAT and Thresholding to segment the
images and keep on improving the classifier. Further
efforts will focus on improving execution times by
parallelizing the execution of both algorithms.

Missed characters LAT+Thr. LAT+Wat. LAT+Thr.+Wat.

0 102 91 163
1 87 90 72
2 49 43 19
3 23 30 6
4 10 8 7
5 11 10 2
6 11 8 1

more than 6 108 32 40

Table 2: Performance of the merged algorithms.
Amount of images according to the number of missed
characters.

Improving the classifier is not the only way to
improve results. As segmentation algorithms do also

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 66

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 im

ag
es

Missed characters

LAT
LAT+THR
LAT+WAT

LAT+UMB+THR

Figure 4: Results of the merged algorithms.

Mean time\ Alg. LAT Water. Thres.

seconds 2.99 14.81 1.53

Mean time\ Alg. L-T L-W L-W-T

seconds 4.36 16.56 18.33

Table 3: Mean time of execution of the algorithms.
On the left, algorithms on their own. On the right,
algorithms merged.

make failures, we decided to test what the gain in per-
formance would be if we took together results from
two or more algorithms applied to an image. We did
this in [4] but now this merge is not done by filtering
together all algorithms’ results, because the fussion
filter may join objects belonging to the result of dif-
ferent algorithms. We applied several algorithms to an
image, filter their result separately, and join all results.
Results are shown in table 2 and in figure 4. In table 3
we show the time consumption of the recognition pro-
cess depending on the segmentation techniques used.
The process reveals as very slow when we use the
Watershed algorithm as segmentation technique; on
the other hand, LAT and Thresholding working to-
gether improve results with low time cost. If, for in-
stance, we can afford 3 characters missed, using LAT
plus Thresholding nearly83, 65% of images could be
solved successfully.

6 Conclusion
We present a process for detecting the registration
number of truck containers based on segmentation al-
gorithms,k-NN classifiers and filters. We used im-
ages selected randomly from a set of real images, and
compared the performance of the recognition process
against the results given by a human operator. We
wanted to adjust the process, in such a way, that we
did not miss any character in the registration number.
Our evaluation of the different solutions then penalties
the lose of characters.

We made experiments with different segmenta-

tion algorithms. We concluded that the solution that
better fits our needs would be taking together LAT and
Thresholding to segment the images and keep on im-
proving the classifier. Further efforts will focus on im-
proving execution times by parallelizing the execution
of both algorithms.

References:

[1] Salvador, I., Andreu, G., Pérez, A.: Detection of
identifier codes in containers. Proc. SNRFAI-2001.
Castellón, Spain. May de 2001.1 (2001) 119–124

[2] Salvador, I., Andreu, G., Pérez, A.: Preprocess-
ing and recognition of characters in container codes.
ICPR2002, Canada, 2002 (2002)

[3] Woods, R.G.R.: Threshold selection using a minimal
histogram entropy difference. Addison-Wesley (1993)

[4] Rosell, J., Pérez, A., Andreu, G.: Segmentation algo-
rithms for extraction of identifier codes in containers.
Int. Conf. (VISAPP-2006), Portugal (2006) 375–380

[5] Atienza, V., Rodas, A., Andreu, G., Pérez, A.: Op-
tical flow-based segmentation of containers for auto-
matic code recognition. Lecture Notes in Computer
Science3686(2005) 636–645

[6] Soille, P.: Morphological image analysis: Principles
and applications. Springer Verlag (1999)

[7] Kirby, R.L., Rosenfeld, A.: A note on the use of
(gray level, local average gray level) space as an aid
in threshold selection. IEEE Transactions on Systems,
Man and Cybernetics SMC-9 (1979) 860–864

[8] Beucher, S., C-Lantuéjoul: Use of watersheds in con-
tour detection. CCETT/INSA/IRISA IRISA Report n.
132, Rennes, France (1979) 2.1–2.12

[9] Fukunaga, K.: Statistical Pattern Recognition. Second
edition edn. Academic Press (1990)

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 67

