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Lo-Sensitivity Minimization of 2-D Separable-Denominator
State-Space Digital Filters Subject tal,-Scaling Constraints
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Abstract: - The problem of minimizing arl,-sensitivity measure subject t,-norm dynamic-range scaling con-
straints for two-dimensional (2-D) separable-denomindigital filters is formulated. The constrained optimipati
problem is converted into an unconstrained optimizatiaybj@m by using linear-algebraic techniques. Next, an effi-
cient quasi-Newton algorithm is applied with closed-foronniula for gradient evaluation to solve the unconstrained
optimization problem. The optimal filter structure is themstructed by employing the resulting coordinate transfor
mation matrix that minimizes thé&,-sensitivity measure subject to the scaling constraintsiuferical example is
presented to illustrate the utility of the proposed techaiq

Key-Words. - Ly-sensitivity minimization,Ls-scaling constraints, 2-D separable-denominator diditiglrs, quasi-
Newton method

1 Introduction and pureL,-sensitivity minimization [5]-[7], [13]-[16].

In digital filter implementation, the synthesis of a state- |n this paper, we investigate the problem of minimizing
space digital filter is known as the problem of obtainingh 7.,-sensitivity measure subject tb,-norm dynamic-

a suitable set of state-space equations that describe agl&ge scaling constraints for 2-D separable-denominator
sired transfer functiorf(z). However, the state-spaceiigital filters. TheL,-norm dynamic-range scaling con-
equations corresponding to a transfer functidiz) are straints are imposed on the synthesis since it is well known
not unique. Naturally, among the infinite number of statghat the use of scaling constraints can be beneficial for
space descriptions dff (), one may want to identify asuppressing overflow oscillations [17], [18]. This pa-
state-space description that minimizes a suitable sepgir is organized as follows. In section 2, we present
tivity measure. When realizing a fixed-point state-spagestandard definition for a purB,-sensitivity of a 2-D
description with finite word length (FWL) from a transseparable-denominator digital filter with respect to its re
fer function with infinite accuracy coefficients, the coeffilization coefficients and provide detailed analysis fis th
cients in the state-space description must be truncated 9fsensitivity measure. In section 3, we present our idea
rounded to fit the FWL constraints. Since the quantizatighd develop a method for obtaining the optimal realiza-
of the coefficients of the digital filter alters the characteion. In section 4, we illustrate the effectiveness of the
istics of the designed digital filter, the sensitivity witt-r proposed technique through a computer simulation. Fi-

spect to the coefficients of the digital filter is considered fally, we provide some concluding remarks in section 5.
be a measure of the influence of coefficient quantization.

A number of sensitivity measures have been defined an@ hroughout the papel,,, denotes the identity matrix of
applied to both one-dimensional (1-D) digital filters [1]dimensionn x n. The transpose (conjugate transpose) of
[7] and 2-D digital filters [8]-[16]. Presently, two maira matrix A and trace of a square matrik are denoted by
classes of techniques for constructing the state-space 4é-(A*) andtr[A], respectively. Theth diagonal ele-
scription that minimizes the coefficient sensitivity existnent of a square matrid is denoted by A);;. In addi-
mixed L, /Ly-sensitivity minimization [1]-[4], [8]-[13] tion, & is used to denote the direct sum of matrices.
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2 Sensitivity Analysis
_ o ' From (2) and Definitions 1 and 2, the overdlh-
A 2-D separable-denominator digital filter can be deensitivity measure for the filter in (1) is defined as

scribed by the Roesser local state-space (LSS) model [19],

[20] H&H 21,2’2 H&H 21,2’2
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wherex" (i, j) is anm x 1 horizontal state vectos" (4, ) Obs def
is ann x 1 vertical state vector(i, j) is a scalar input, N OH (7, zQ) 5)
y(i,7j) is a scalar output, andl;, Az, Ay, by, by, ci, ock )

c2, andd are real constant matrices of appropriate dimen-

sions. The LSS model is assumed to be asymptoticdf§fining

stable, separately locally controllable and separately lo

_ - —1
cally observable [20]. The transfer function of the system Pz) = (22In— Ad) 1121
in (1) is given by Q(z1) = cal(zdly — As)
1 F(Zl, ZQ) = (ZlIm — Al)fl [bl + AQP(ZQ)]
21 Ly — Ay —As i
H(z1,22) = [e1 e 0 oI, — Ay G(z1,22) = [e2+ Q(21)Az] (221, — Ay)
' Zl] d it follows that
2
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[d e 1 2 e [W] tr (K] ©6)
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) where

The Ls-sensitivity of the system in (1) is defined as fol-

lows. _ -1 1
Definition 1: Let X be anm x n real matrix and let Ma, 27TJ 7{1| 1 7|{Z2 =1 Fla ’Z QG )]
f(X) be a scalar complex function o, differentiable . . dz1dze
with respect to all the entries 6. The sensitivity func- ' [Q (20)F7 (21, 22)] 2129
tion of f with respect taX is defined as M P
af of o 27” 7{1| 1 7{22 =1 o))
Sx=5x 5x)i=go @) dzdz
; (PEHGE RN
wherez;; denotes théi, j)th entry of matrixX. “1%2
Definition 2: Let X (21, 22) be anm x n complex
matrix-valued function of the complex variables and = . _ 1 P(zQ)P*(ZQ)dZQ
2. The L,-norm of X (21, z2) is defined as 27rj |2]=1 29
g f) F(z1,2)F* (21, 2 dzrdz
Xl = | ez f X 270 i J I B
(2m))? Jiz1 =1 J)z0=1 2122 , dzy
(4) = ﬁ Q" (21)Q(=1)—~
where|| X (z1, z2)|| 7 is the Frobenius norm of the matrix J I [=1 !
X (21, 2») defined by 7{ (o1, 22) G, 20) 2192,
27TJ lz1]=1 J|za|= 1 2122

[N

n

406

=1

1 X (21, 22)|F = {ZZ |Zpq(21, 22)
p=1gq

2}

Here, K" and K¥ (W" and W") are referred to as the
horizontal and vertical local controllability (observkiy)
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Gramians, respectively [20]. The sensitivity is indepeis applied to the LSS model in (1), then the new realization
dent of the state-space parameten (2) and therefore it is related to the original one by

is neglected here. It is easy to show that thesensitivity — 1 — 1
measure in (6) can be expressed as [16] Ay = Ty ATy, Ay =T, AT,

n m A, = T;'ATy
ZO’;-UU’ [W?] + ZO’;}U’ [K;] 51 = Tl_lbl’ 52 = Tllbg
=0 j=0 c = ClTl, Cy = C2T4
+tr [Wh+W”+Kh+K”} w" = 'whr,, W' =TIW'T,
—h _ _ —v _ PYp—
e (W] e (K] ) K" = T7'K'"T77, K’ =T;'K'T;7. (10)

where all the Gramians can be obtained by solving the fdlke Ly-sensitivity of the new realization is changed to
lowing Lyapunov equations

W? | ulcl W S = Zaftr [TIIW?(Tl)Tl_T]
x x| O % i=0
A ;e T+ 0 0 —i—ZU;-Ztr [T4TK;-’(T4)T4]
0 A o I, §=0
T —=h =V —=h  =v
[K;g *] B [A% 0] [K;’ 1 —l—tr[W +W + K —I—K}
= - - .
* A I T e [ W] o [K']. (11)
Ay O 0 0
: [b o A ] + [0 I ] Here W (T) and K}(T4) can be obtained by solving
R ! " the Lyapunov equations
K' = A;K°Al + bybl whT W
K" = A\K"AT + A,K" AT + byb! [ () :] _ [ : uzcl] ]
W' = ATW"A; + cf ey N T o o
v T v T h T 1 uzcl
u; and v; are obtained by performing eigenvalue- . T .
eigenvector decomposition %" and K* Kj(Ts) *| _ | A2 O Kj(Ty) =
* * va? Ay * *
K’ = UxUT = Za e A, 0 0 0
' [bg’vgr AJ {0 T;TTZI}

hoo_ hy T _ hoy 2T
Who= VEIVE = ZUJ Vit ® Concerning the constraints for the minimization prob-

lem at hand, if thel,-norm dynamic-range scaling con-

and then using the following relationship straints are imposed on the new state-variable vector

h

_ x" (1,7

g = by, w;= Ay, i=1,2,...,n :BZ[TJEZ. j” (12)

~ T ~ T .

o €2 Y 295 J= 55 mm then it is required that foi = 1,2,---,n andj =
to obtainu; andv; 1,2,

Fh 1 grhp—T
e . .. . K),, = (T " K"'"T =1

3 Sensitivity Minimization (_v)“ ( L iT)”

If a coordinate transformation defined by The problem of»-sensitivity minimization subject té,-

zh(i,7)]  [T1 O -1 x"(i, ) 9 norm dynamic-range scaling constraints is now formu-
z(i,7)| | 0 T4 x°(i,5) ) lated as follows:Given matrices A, As, Ay, by, bo, 1

~
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and ¢y, obtain an m x m nonsingular matrix 77 and an where
n X n honsingular matrix T4, which minimizes the sensi-

tivity measure in (11) subject to the scaling constraints in W}»Z(Tl) _ Z H T1 T H (k)T
(13). ’

Since the LSS model in (1) is assumed to be asymptoti- o Y T s
cally stable, separately locally controllable and sepdyat K;(Ty) = Z H,;(k)'T, T, H,;k)
locally observable, the horizontal and vertical local con-
trollability Gramians, K" and KV respectively, are sym- ﬂ?(k) — (KMV2HP (k)(KM)V?
metric and positive-definite. This implies thak")!/? .
and(K")'/? satisfying Hi(E) = Y Al AF?

p=0
Kh = (Kh)l/Q(Kh)l/Q ﬁv(l{:) — (Kv)fl/QHp(k)(Kv)l/Q
v __ v\1/2 v\1/2 J J
K’ = (K")'*(K") e
HY(k) = Y Albywl A}
are also symmetric and positive-definite. Defining ! pzo A
. . Y hN\1/2vx/h ( g-hy1/2
Ty =T (KN, Ty = TR (1) W= KWK
— (Kv)l/QWv(KU)I/Q

the scaling constraints in (13) can be expressed as .
From the foregoing arguments, we can see that the prob-

Tt _ 1 i—19 lem of obtaining ann x m nonsingular matrixI'; and
(T, o 1 )”' I i ke A R ann x n nonsingular matrixr’s, which minimizes (11)
(T, T, )u‘ = 1,i=12--- n. (15) subject to the scaling constraints in (15) can be converted

into an unconstrained optimization problem of obtaining
The constralnts in (15) simply state that each columnéinm x m nonsingular matrid’; and ann x n nonsingu-

T; andT4 must be a unity vector. If matricés, ! and lar matrix T4, which minimizes (17). To this end, we ap-
ply a quasi-Newton algorlthm [21] to minimize (17) with

respect to the matricef; and T, given by (16). Letr
MEVRCY (1) be the column vector that collects the variables in matri-
A1 9
[ [ H]

T4 are assumed to have the form

, cesT'; andT'y. Then.J,(T') is a function ofz, which we
||t§1)|| ||t§1) denote byJ(x). The optimization algorithm starts with
1 t§4) (4) ¢ a trivial initial point =, obtained from an initial assign-
[ D IRy ] (16) mentT, = I,,, T, = I, Then, in thekth iteration a
It ” ”t2 H It guasi-Newton algorithm updates the most recent pojnt
to pointzxy.,; as

then (15) is always satisfied. Using the coordlnate trans
formationsT'; and T4 in (14), with T1 andT4 speci- Tppi1 = @) + opdy, (18)
fied in (16), theL,-sensitivity measure in (11) becomes a

function of matriced™; andT'4. If we denote this function where

by J,(T'), then it follows from (11) and (14) that
dk = —SkVJ(:Bk)

ar = arg min J(x; + ad
Zatr[ (Tl)Tl] b g min J(@y + ady)

T T
Ski1 = Sip+ (1 + i fk’m) 6];5k
n Z ol [T4IA{§(T4)T4T} YOk / Vi Ok
= _%V%Sk + SkVelt
Loy,
So = Im2+n2, 5k = Tk+1 — T

+tr [TlvithlT + T4W”Tﬂ +m+n

A A AT
Yt [le Tl} (17) e = VJ(zpe) — VJ(z).



Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 409

Here, V.J(x) is the gradient of/(x) with respect tox, andT', are obtained as
and S}, is a positive-definite approximation of the inverse

Hessian matrix of/(x). The iteration process continues . [ 1124484 —0.280394  0.255922
until T, = |—-0421171 1.025558 0.330664
—0.52 —0.44991 764121
T (@ps1) — J(2)| < & (19) L 0.529598 0.449919 0.76
_ , o 1.354786  —0.270031 —0.026251
wher_ez«: > 0 is a prescribed _tolerance. If the |terat|qn IS, — | -0.641918 1.123431  0.288145
terminated at step, thenxy is taken to be the solution —0.366800 —0.362196  0.924809
point. )
or equivalently, matrice¥’; andT'4 are found as
4 Numerical Example [0.834682 0.277258 —0.467950
T, = |0.536765 0.639090 —0.165736
Consider a 2-D separable-denominator state-space digital | 0.345994 0.706357  0.236653
filter specified by [ 1113890 —0.921189  0.336130
0.0 1.0 0.0 T, = |—-0.869618 0.928016 —0.545490
A, — 0.0 0.0 1.0 | 0.733270 —0.682433  0.691443

1 0.599655 —1.836929 2.173645

[0.064564 0.033034 0.012881 B
Ay, = 10.091213 0.110512 0.102759 S = 1.010064 x 10%.
1 0.097256 0.151864 0.172460

[0.0 0.0 0.564961 . _ _ _ _
Ay = 1.0 0.0 —1.887939 Table 1: Lo-sensitivity profile of first 30 iterations.

00 1.0 2280029 k | Ly-sensitivity| k | Lo-sensitivity
) 2.423893%10* | 10 | 1.012574 10
4.52607%10° | 11 | 1.011758 10
1.232246¢10% | 12 | 1.010602 102
1.112628&10% | 13 | 1.010325¢10?
1.082960¢10% | 14 | 1.010271 107
1.046686<10° | 15 | 1.01014810?
1.039913<10% | 16 | 1.01010% 102
1.03293%10% | 17 | 1.010074 107
1.01978510% | 18 | 1.010065¢10?
1.014876¢10% | 19 | 1.010064< 102
1.01317410% | 20 | 1.010064< 102

The Ls-sensitivity measuré in is then found to be

0.047053 0.062274 0.060436]T

[

(1.0 00 0.0]"
co = [1.0 00 0.0]

[0.016556  0.012550 0.008243]
d = 0.019421.

By computing all the Gramians from (7) and (8), the-
sensitivity measuré,, in (7) is found to be

O ONOOOPA WN O

S, = 2.423893 x 10%.

To perform scaling so that (13) is satisfied, we apply a
co_ordlna'.[e transformation matrik, = T, ® T4, to the 5 conclusion
original linear system wheréT';,);; = /(K");; and
(T4s)is = m TheL,-sensitivity measuré isthen The problem of minimizing anl,-sensitivity measure
found to be subject toL,-norm dynamic range scaling constraints has
S = 4.526079 x 105. been investigated for 2-D separable-denominator digital
filters. An efficient method has been developed by using
When applying the quasi-Newton algorithm in (18) to thee quasi-Newton algorithm and some matrix-theoretic
scaled realization, thé,-sensitivity profile of the first 30 techniques to develop a closed-form solution for the op-
iterations is given in Table 1 and Fig. 1. From Table 1 afi¢hization problem. Our computer simulation results have

Fig.1, it is observed that the algorithm practically coRtemonstrated the effectiveness of the proposed technique.
verges with 19 iterations. After 19 iterations, matridés
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Figure 1: L,-sensitivity profile of first 30 iterations.
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