
 
 

Enhanced Correlation Search Technique For Clustering 
Cancer Gene Expression Data 

 
B. SATHIYABHAMA1, N.P. GOPALAN2 

  
1 Department of CSE, Sona College of Technology, Salem, INDIA. 

2 Department of CSE, National Institute of Technology, Tiruchirappalli, INDIA. 

 
Abstract: - The advent of DNA Microarray technologies has revolutionized the 
experimental studies of gene expressions. In the post-genomics era, clustering analysis 
has become a valuable tool for in-silico analysis of gene expression profiles. Although a 
number of clustering methods have been proposed, they are confronted with difficulties 
in meeting the requirements of high quality, large memory, performance and 
automation. In this paper, a novel-clustering algorithm namely Heuristic based 
Enhanced Correlation Search Technique (HECST) has been proposed. The distinct 
characteristic of HECST is that it integrates the validation techniques into the clustering 
process so that it produces high quality clusters dynamically. This algorithm is 
implemented using memory efficient data structure namely sparse matrices to store the 
gene expression profile. Sparse matrices tremendously reduce the size of the memory, 
hence provides computational efficiency. The performance of the algorithm is evaluated 
against number of reasonable benchmarks (e.g Direct application of raw data) for 
cancer gene expression data sets. The empirical results proved that this new algorithm 
automatically produces the optimal clusters in a much faster way than the traditional 
clustering methods like K-means, CAST and E-CAST. Analysis of data produced by 
HECST tenders potential insight into gene function, molecular biological processes and 
regulatory mechanisms. 
Keywords: - Clustering, Gene Expression Data, validation Techniques, Sparse matrices, 
Correlation search technique and algorithm. 
 

1 Introduction 
Microarray experiments for simultaneously 
measuring expression levels of thousands 
of genes are becoming widely used in 
genomic research. They have enormous 
promise in such areas as revealing function 
of genes in various cell populations, tumor 
classification, drug target identification, 
understanding cellular pathways, and 
prediction of outcome to therapy [11], [14].  
A major application of microarray 
technology is gene expression profiling to 

predict outcome in multiple tumor types 
[17].  Various data-mining methods can be 
applied to cancer datasets in order to 
identify class distinction genes and to 
classify tumors. A partial list of methods 
includes data preprocessing, visualization 
methods and clustering. The focus here is 
on clustering methods. Clustering 
techniques are useful in identifying (yet 
unknown) subclasses of tumors, or 
identifying clusters of genes that are 
coregulated or share the same function [1].  
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The elements or objects within clusters 
have high similarity in comparison to one 
another, but are very dissimilar to objects in 
other clusters [1], [14]. Clustering can be 
used to categorize genes with similar 
functionalities and gain insight into 
structures inherent in population. These 
methods have been successful in separating 
certain types of tumors associated with 
different types of leukemia and lymphoma 
[17]. The groupings of biologically relevant 
clusters containing genes are having similar 
expression patterns. Thus clustering reveals 
co expression of genes, which were 
uncharacterized previously.  
Clustering technique has become an 
efficient and mandatory tool for in-silico 
analysis of gene expression data [4], [5], 
[6], [9], [12].  A variant of hierarchical 
clustering algorithm is used by Eisen et al. 
[6] to identify groups of co expressed yeast 
genes. Two-way clustering technique [4] is 
used to detect clusters of correlated genes 
and tissues. To identify clusters in the yeast 
cell cycle data set, human hematopoietic 
differentiation data set Self-organizing 
maps [12] were used.  Biologically 
meaningful clusters of yeast chodata have 
been determined by using genetic enhanced 
K-Means method [2]. These techniques 
have the drawbacks of computational 
adequacies, lack clustering quality and 
destabilization of clusters. Vincent S. Tseng 
et al. [3] proposed a new clustering 
algorithm that incorporates validation 
technique and produces high quality 
clusters. Number of clustering methods 
have been proposed [1], [7], [8], [10], they 
are confronted with the following 
difficulties:  

• Most clustering algorithms request 
the users to specify some input 
parameters like number of clusters, 
structures and conditions. 

• Clustering algorithms are incapable 
of producing optimal results for 
large data sets. 

• Traditional clustering methods may 
not perform well, when non-
optimal clustering result is 
enforced. 

Input parameters are playing vital role in 
determining the efficiency of the clustering 
results. In biological applications it is very 
difficult to obtain certain parameters 
manually. Thus an automatic clustering 
technique is required to identify the suitable 
input parameters. Further validation 
indexes are used to improve and evaluate 
the quality of the clustering, the suitability 
of parameters and the reliability of 
clustering algorithms. The biclustering gene 
expression data using Numerous validation 
indexes are used in practice like Jaccard 
coefficient, Simple matching coefficient 
and Hubert’s Γ (gamma) statistic [13], [15]. 
Correlation based clustering algorithm [3] 
uses validation index Hubert’s Γ statistic 
[15]. This method consumes more memory 
and execution time hence it becomes 
computationally inefficient. Vincent Tseng 
et al. [3] used the same constraint for both 
addition and removal of elements to the 
clusters. The validation index used by them 
is more complex and time consuming. 
These constraints make the algorithm very 
unstable while forming the final clusters 
and the outliers also not properly been 
filtered out. In the proposed work, 
correlation based clustering method is 
integrated with validation technique. The 
validation index Hubert’s Γ statistic is 
simplified and enhanced to cluster gene 
expression data set. The significant 
characteristics of the proposed approach are 
as follows:  First the algorithm uses 
memory efficient data structure called 
sparse matrix, which is used to store the 
gene expression similarity matrix, which 
reduces the amount of memory required. 
Unlike the traditional clustering algorithms 
the proposed algorithm uses the constraint 
based addition procedure to add the 
elements to the clusters. This algorithm 
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never removes any element from the 
clusters once added and also outliers are 
filtered out during the initial stage itself. 
Hence the stability and quality of the 
clustering process is improved. 
 
2 Enhanced Hubert’S Γ Statistic 
A similarity matrix S is generated based on 
the given Microarray data set. The matrix S 
stores the similarity between each pair of 
genes in the data set, with the degrees in 
range of [0,1]. To obtain the similarity, 
Pearson’s correlation coefficient [15] 
similarity measurement has been used. The 
sparse matrix T can be generated from the 
matrix S. Sparse matrix is the three 
columns matrix that stores only non-zero 
entries of the original matrix. In the first 
row, number of rows, number of columns 
and total number of non-zero elements are 
stored. From the second column onwards 
the row value, column value (i.e., the 
position of the non-zero element in the 
original matrix) and the value of the non-
zero element are stored successively.  

               
 
 
 
 

          Table 1 Original Matrix  

 
 
 
 
 
 
 

       Table 2 Sparse Matrix 
 
  

 
 The representation of the sparse matrix for 
the given input matrix and the amount of 
memory reduction is clearly understood 
from the Tables 1 and 2. Then the 
clustering process automatically clusters the 
genes according to the similarity matrix 

with out any user-input parameters. To 
cluster the genes quickly and automatically 
validation technique is integrated with the 
clustering process. Let X = [X(i,j)], 
Y=[Y(i,j)] be the proximity or closeness 
matrices for the same n ge nes. X(i,j) 
indicates the observed correlation 
coefficient of genes i and j, Y(i,j) is defined 
as 
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The Hubert’s Γ statistic represents the point serial 
correlation between the similarity matrices X and Y. 
Given a gene expression data clustering results the 
more genes that fall in the same clusters of higher 
similarity and different clusters of lower similarity 
are considered best quality clusters. Therefore, the 
point serial correlation between the matrices X and Y 
can be used to measure the quality and reliability of 
clustering results. The enhanced Hubert’s Γ statistic 
is a very simple and rapid technique that also 
improves the performance of the algorithm.  
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the double sum, and σ  and Yσ  are the standard 
deviations, while X and Y denote means of the 
entries of matrices X and Y. The enhanced statistic is 
derived from expanding and substituting the 
necessary fast heuristic from the basic Hubert’s Γ 
statistic in (2). 
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The value of Xσ in (2) is invariable, and an 
expansion of 

0 0 0 1 0 
1 0 0 0 1 
0 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 

5 5 6 
1 4 1 
2 1 1 
2 5 1 
4 2 1 
5 3 1 

Yσ  is as follows: 
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    The similarity matrix values are 
computed in terms of degrees in range (0,1) 
so the square of Y(i,j) is also equal to Y(i,j). 
Hence the denominator of (3) is much 
shorter term than the numerator. So the 
equation in (3) is referred as fast and 
enhanced Hubert’s Γ statistic. 

 

3 Pseudo Code  

     The input for this algorithm is a sparse 
matrix that is constructed from the 
symmetric similarity matrix of the given 
gene expression data set. This constructs 
clusters one at a time. The current cluster is 
denoted by Copen. Each cluster is started by 
a seed value and constructed incrementally 
by adding items to Copen. The addition of 
data items is computed using enhanced fast 
Hubert’s Γ statistic (3) and is defined as 
Γadd(k). The current maximum is 
represented as Γmax. An element k is added 
if it has high positive correlation i.e high 
similarity. Also it clusters low similarity 
gene data items in different clusters 
according to the value. The value of Γ is 
between (-1,1) and a higher value of Γ 
represents the best clustering quality. A 
data item is added to the cluster if it 
satisfies the maximum neighbors criteria 
and a threshold value. In general, the 
threshold value depends on the number of 
patterns and the number of features in the 
data set.  The Copen procedure is stabilized 
by consecutive addition operations. To 
inaugurate a new cluster, a data item with 
maximum number of neighbors or closest 
data items is used. Also a threshold value is 
used while adding an element, it 
automatically filters out the outlier data 
items and appropriately insert in to the 
respective clusters. These are the principal 
heuristics that is been attached to the 

algorithm and is also responsible for 
assigning clusters to all the valid items only 
once. The pseudo code is as follows: 

PROCEDURE HECST;  

// Algorithm for correlation based enhanced fast 
Hubert’s Γ statistic clustering; 

INPUT -  An n X n sparse( Symmetric similarity 
)matrix T; 

OUTPUT – Clusters having high intra cluster 
similarity and low inter cluster similarity; 

BEGIN 

M = n(n –1) /2; 

Stx = ; ∑∑
−

= +=

1

1 1

),(
n

i

n

ij

jiT

Sty  = 0; 

Stxy  = 0; 

C = Φ ; // the set of clusters 

U = { 1,2,3, …., n}; 

Γmax  = 0; 

While (U != 0) do  

begin 

     Copen = 0; 

     for i = 1 to d do   // Expected number of clusters d 

     a[i] = 0; 

// Assigning seed values, select the data item u from 
the U with maximum neighbors 

                        for i = 1 to n do 

   U = U – {u}; 

  for i = 1 to n do  

   a[i] = T(u,i); 
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  Copen = {u}; 

// Addition of elements to the clusters based on 
constraints and threshold value 

  while maxvalid() and ctthresh  

  begin 

  for i = 1 to n do 

  begin 

  if (u has maximum neighbors 
(mn) in a[i]) 

  select u as to start; 

  end; 

  U = U – {u}; 

  Sty  = Sty + | Copen| ; 

  Stxy  = Stxy + a[u];  
  

  for  i = 1 to n do 

  begin 

  if (i Є U and i  Є Copen) 

  a[i] = a[i] + T(u,i); 

  end; 
                                                CCopenopen  ==  CCopenopen  ƯƯ  {{uu}};;

}{

  

  Γmax  =  maxvalid(); 

  end; 

  end; 
                                              C = C Ư Copen;  

END. 

// maxvalid() is a subroutine ie calculated as follows: 

PROCEDURE maxvalid() 

BEGIN 

   
( ( ) ( ))

( ) ( )|||| opentyopenty

opentytxtxy

CSCSM
res

+−+

||*|)(max* CSSUuuaSM +
=

   

∈ − +

return (res); 

END. 

4 Evaluation 
        To evaluate the performance of the 
proposed approach cancer gene expression 
data set is used. Datasets [18] from breast 
cell lines transfected with the CSF1R 
oncogene creating a phenotype that invades 
and metastasizes. The benign cell line was 
then transfected with the two mutated 
oncogenes, creating one phenotype that 
invades and another one that metastasizes. 
Gene expression levels were measured 
eight times for each phenotype. 
Transfection with a single oncogene is 
expected to generate similar expression 
profiles, presumably because only a few 
genes are biologically influenced. 
Therefore, it was desirable to see whether 
profiles of the different phenotypes can be 
partitioned. Due to noise in the data and 
similarity between the different samples, 
common clustering techniques such as 
hierarchical, K-Means, and E-CAST did 
not succeed in cleanly partitioning the data. 
Expression levels of the four cell lines were 
measured in two separate sets of four 
measurements. To measure the ratio of 
three of the cell lines: benign, invasive, and 
metastasizes with respect to the cell line 
that invades in the first batch, and the 
corresponding ratios were similarly derived 
for the second batch.  

These data sets’ cluster structures are 
determined in advance. From the given data 
set, the users can set up some parameters 
for generating various kinds of gene 
expression data sets with variation in terms 
of the number of clusters and number of 
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genes in each cluster. The program also 
generates the seed genes. The seed genes 
must have the same number of constraints 
for all the clusters.   If the seed genes and 
the threshold values are appropriately 
incorporated and tested in the algorithm, 
then all the genes in the same clusters will 
have very high similarity and they will have 
dissimilarity with genes in the other 
clusters. It is also filtering the outliers or 
noise data. To test the algorithm’s 
performance two data sets of gene 
expression profiles are generated.  

Table 3 Experimental results for the 
synthetic data sets 

The proposed algorithm is compared with 
the other clustering algorithms for gene 
expression data sets. The table 3 provides 
the complete details about the cluster 
structure, clustering patterns for HECST, E-
CAST, K-Means and their computational 
time (C. time in Table 1). The newly 
designed algorithm HECST outperforms 
quantitatively and qualitatively in 
computational time and the memory 
utilization. In addition, the results show that 
the quality of clustering will be better in the 
proposed algorithm. This can provide more 
accurate clustering results and insight into 

molecular process, morphological 
characteristics and gene control functions. 
Figures 3 and 4 show that large contiguous 
group of genes share the similar expression 
patterns over set of conditions. This type of 
clustering structure elaborates the 
biological significance of the underlying 
genes. The result of this clustering analysis 
may be a group of co-regulated genes (i.e. 
genes that exhibit similar experimental 
behavior) that are placed in the same 
cluster. They express the relationships 
between the clusters and the functional 
categories in biological activities.  
The data sets presented here demonstrates a 
feature of gene expression that makes this 
method particularly useful, namely 
tendency of expression data to organize 
genes in to functional categories. It is 
known that genes expressed together share 
common functions. Gene expression 
patterns suffice to separate genes into 
functional categories across a relatively 
small and redundant collection of 
conditions. It seems likely that the addition 
of more and diverse conditions can only 
enhance these observations.  
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     Fig. 1  Cluster Profile for Data set 1 
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                      Fig. 2  Cluster Profile for Data set 2 
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The proposed algorithm is superior to the 
existing approaches in quality and 
efficiency, stability and memory utilization. 
HECST algorithm is compared with E-
CAST [16] and traditional k-means 
algorithm [1]. It is understood from the Fig. 
1 and 2 that HECST algorithm emphasizes 
its supremacy of capturing sharp coherent 
tendency among gene expression data. In 
addition, the result of functional enrichment 
of HECST clusters highlight the fact that 
these clusters carry significant biological 
meaning.  
  
5 Conclusion 
  
Clustering analysis is a valuable and useful 
technique for in-silico analysis of 
Microarray data. Most of the clustering 
algorithms used in practice are having 
certain inherent difficulties in the aspects of 
automation, economic memory usage, 
quality, efficiency, and stability.  The 
proposed work integrates enhanced, 
simplified and heuristic based validation 
index to the clustering process. This 
algorithm clusters the gene expression data 
sets dynamically and produces optimal 
results. The dynamic clustering process 
signifies great promise for using this 
technique to glean information from gene 
expression profile. To evaluate the 
performance of this novel algorithm cancer 
gene expression data sets have been used 
and it is compared with the E-CAST and K-
Means clustering algorithms. HECST is 
outperforming in terms efficiency, 
clustering quality, stability and 
performance. Future work includes the 
application of HECST on more real data 
sets and the theoretical analysis of the 
determination of the threshold parameter. 
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