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Abstract: Data mining techniques presented in the literature are usually used for prediction and they are tested
on well known benchmark problems. System identification is a practical engineering problem and an abductive
task which is affected by several kinds of modeling assumptions and measurement errors. Therefore, system
identification is supported by multiple-model reasoning strategies. The objective of this work is to study the use
of data mining techniques for system identification. One goal is to improve views of model-space topologies. The
presence of clusters of models having the same characteristics, thereby defining model classes, is an example of
useful topological information. Distance metrics add knowledge related to cluster dissimilarity. Engineers are thus
better able to improve decision making for system identification.
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1 Introduction

Data Mining is useful in areas such as text categoriza-
tion, speech processing, image recognition and gene
classification among many others (see [8] for more ar-
eas). As stated in [3], the amount of data worldwide
increases at twice the rate of Moore’s Law. This is es-
pecially true in structural engineering, where the use
of sensors has increased drastically in recent years.
An overabundance of data can overwhelm engineers
if data are not processed systematically.

Use of data mining in engineering is not new [6]
[1]. Examples of applications include oil production
prediction, traffic pattern recognition, composite joint
behavior and joint damage assessment. However, all
of these contributions use data mining as a predictive
tool. There are engineering tasks in which it is more
appropriate to use data mining as a descriptive tool,
through obtaining a description of important charac-
teristics of data. System identification is an example
of this type of task. In system identification [5], the
goal is to determine the state of a system including
values of system parameters through comparisons of
predicted behavior with measurements. Since many
causes (models) might lead to the same consequences
(sensor data), unique identification is rarely possible
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in most cases of complex structures. In previous work
[10], a system identification methodology that gener-
ates several candidate models has been developed.

To help engineers in the system identification
task, data mining techniques can be used to extract
knowledge from candidate models. An example of
useful information is relationships between parame-
ters of these models. The number of classes of can-
didate models is also an important piece of informa-
tion, since this indicates whether system identification
is unique. For these assessments, techniques such as
principal component analysis (PCA) [4] and k-means
[12] are useful. K-means clustering has been success-
fully applied in domains such as relational databases
[7] and gene expression data [15]. Even though clus-
tering has been proposed for various applications by
the data mining community, its application is not
straightforward; there are many open research issues.

Hybrid data mining methods are proposed in the
literature, for example, [9] and [14]. Most work com-
bines data mining methods for better prediction. For
example, [2] proposed a combination of PCA and k-
means to improve prediction accuracy of DNA gene
expression and Internet newsgroups. Visualization
improvement is not the objective of this research. Hy-
brid data mining methods that aims to generate better
descriptions of spaces of models have not been found
in the literature.

While there are well accepted methods such as

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         161



cross-validation [13] for evaluating predictive mod-
els, quantitative methods are not available for evaluat-
ing the clustering of candidate models. The criterion
for assessing the capability of clustering algorithms
is subjective and dependent on the final goal of the
knowledge discovery task.

In this paper, a combination of two data min-
ing techniques is proposed to extract knowledge from
models. PCA and k-means clustering are used to fa-
cilitate better understanding of the space of candidate
models. An important objective is to obtain a view of
model-space topologies. The main focus of this paper
is on clustering model data, where three issues are ad-
dressed. Firstly, an evaluation of the quality of a set of
clusters is performed specifically for the task of sys-
tem identification. Secondly, the choice of the number
of clusters is discussed. Finally, limitations of knowl-
edge discovery are presented.

The paper is structured as follows. In Section
2, multiple-model system identification is presented.
Section 3 explains how data mining techniques can be
used to obtain useful knowledge for engineers. Sec-
tion 4 contains the results of a case study and a dis-
cussion of limitations. The final section contains con-
clusions and a description of work in progress.

2 Multiple-Model System Identifica-
tion

Traditionally, system identification is treated as an op-
timization problem in which the difference between
model predictions and measurements is minimized.
Values of model parameters for which model re-
sponses best match measured data are determined by
this approach. However, this approach is not reliable
because different types of modeling and measurement
errors compensate each other such that the global min-
imum may be far away from the correct state of the
system. Therefore, instead of optimizing one model, a
set of candidate models is identified in our approach.
These candidate models lie below a threshold which
is computed using an estimate of the upper bound of
errors due to modeling assumptions as well as mea-
surements. Each model has a unique value for each
model parameter.

An indication of the reliability of system identifi-
cation is obtained through an examination of the char-
acteristics of the population of candidate models. If
model parameter values show wide variation, it means
that either parameter values might have compensated
for the effects of incorrect modeling assumptions or
that the measurement system is inadequate. On the
other hand, if solutions are located in a narrow, well-
defined region of the search space, parameter esti-

Figure 1: Beam used for the case study. Seven parameters
are used.

mates are likely to be accurate. Several distinct re-
gions containing candidate models indicate the pres-
ence of multiple local minima in the objective func-
tion. These have been observed in our experiments.

Our approach is illustrated using a case study of
a two-span beam (Figure 1). The structure is two me-
ters long and its middle support is a spring. Using
the methodology described in [11], several models are
generated. There are seven parameters. They consist
of three loads (position xi on the beam and magnitude
qi) as well as the stiffness κ of the central spring. Ac-
cording to the error threshold discussed in [11], 500
models are identified. These models are used in this
paper and their parameter values are considered as in-
put points for data mining techniques.

Data mining techniques [12, 13] are applied to the
data set containing model parameters in order to ob-
tain useful knowledge for system identification tasks.
In general, the objective is to determine the accuracy
of diagnoses.

3 Mining Model Data

3.1 PCA
PCA is a linear method for dimensionality reduction
[4, 12]. Ultimately, PCA finds a set of principal com-
ponents (PC) that are sorted such that the first compo-
nents explain most of the variability of the data. In the
machine learning community, PCA is usually used as
a preprocessing technique, for example before a su-
pervised algorithm. Since the aim of this study is not
predictive, PCA is used for knowledge extraction.

The main objective is to extract linear relation-
ships among more than two parameters. It is also pos-
sible to obtain a general idea of relative importance
of parameters. This is reflected in the coefficients of
principal components. The coefficients of some pa-
rameters may always be zero. This means that these
parameters have no importance in explaining the vari-
ability of the data. Therefore, they denote reliable
parameters for system identification. Finally, clus-
ters are found while visualizing the data using the first
principal components. Even though PCA is not meant
for clustering, it can be used to improve the clustering
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Clustering procedure
1. Transform the data using PCA.
2. Choose the number K of clusters (Table 2).
3. Loop i from 1 to N
4. Run k-means with K clusters.
5. Calculate score function (SF).
6. End
7. Select clustering i with maximum SF

Table 1: Pseudo-code algorithm combining PCA and k-
means to separate models into classes.

process as explained in the following Section.

3.2 Clustering
3.2.1 Feature Space Clustering (FSC)

K-means [12] is a widely applied clustering algo-
rithm. Although it is simple to understand and im-
plement, it is effective only if applied and interpreted
correctly. The k-means algorithm divides the data into
K clusters according to a given distance measure. Al-
though the Euclidean distance is usually chosen, other
metrics may be more appropriate.

The proposed methodology - combining PCA and
k-means - is described next. First, the PCA procedure
is applied to the models. Using the principal compo-
nents the complete set of model predictions is mapped
into the new feature space. Then, the k-means algo-
rithm is applied to the data in the feature space. The
final objective is to see if it is possible to separate
models into clusters and to present results to the en-
gineer in an understandable way. Table 1 presents the
pseudo-code of the methodology used.

In addition to the limitations mentioned in [12],
this methodology has two drawbacks. Firstly, the
number of clusters has to be specified by the user a-
priori. Strategies for estimating the number of clusters
have been proposed in [12, 13]. One of these method
is chosen here and adapted to the system identifica-
tion context. Secondly, as stated above, the K initial
centroids are chosen randomly. Therefore, running P
times will result in P different clustering of the same
data. A strategy for avoiding such a problem is de-
scribed next.

3.2.2 Evaluation and Significance of FSC

The number of clusters of models is useful informa-
tion for engineers performing system identification.
When the methodology defined in [11] outputs M

possible models, it does not mean that there are M

different models of the structure. These M models

might only differ slightly in a few values of parame-
ters while representing the same model. In other situ-
ations, models might have important differences rep-
resenting distinct classes which are referred to as clus-
ters.

When predictive performances are evaluated, the
classification error rate is usually used. If the aim
is to make predictions on unseen data sets, the most
common way to judge the results is through cross-
validation [13]. In this work, the evaluation process is
different since the goal is not prediction. Results are
evaluated in two ways. Firstly, a criterion is used to
evaluate the performance of the clustering procedure.
Secondly, from a decision support point of view, the
performance is evaluated by users.

The main theme in this Section is to develop a
metric in order to evaluate results obtained by the pro-
posed approach. Without a metric, the way clusters
are seen and evaluated is subjective. Furthermore, it
is not possible to know the real number of cluster in
the data since the task is unsupervised learning and
this means that the answer - the number of clusters
- is unknown. In this paper, the results obtained by
the clustering technique are evaluated using a score
function (SF). The score function combines two as-
pects: the compactness of clusters and the distance
between clusters. The first notion is referred to as
within class distance (wcd) whereas the second is the
between class distance (bcd). In this research the wcd

and the bcd are defined respectively in Equation 1 and
2. From a clustering viewpoint, the objectives are to
minimize the first aspect and to maximize the second,
i.e. to maximize the SF of Equation 3.

wcd =

∑

K

i=1

(

∑

x∈Ci
dist(ci, x)

)

∑

K

i=1
size(Ci)

(1)

bcd =

∑

K

i=1
dist(ci, ctot) · size(Ci)

∑

K

i=1
size(Ci) · K

(2)

SF =
bcd

wcd
(3)

where K is the number of clusters, Ci the cluster
i, ci its centroid and ctot the centroid of all the points.
The functions dist and size define respectively the
Euclidean distance between two points (each point is a
model which is represented by parameter values) and
the number of points in a cluster. From a system iden-
tification point of view, bcd values indicate how differ-
ent the K situations are. Values of wcd give overviews
of sizes of groups of models.
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Controlling Randomness
1. Loop i from 1 to N
2. Loop j from 1 to P
3. Run k-means with j clusters.
4. Calculate score function (SF).
5. End
6. End
7. Select P corresponding to maximum SF.

Table 2: Procedure to limit the effect of the random choice
of the starting centroids when determining the number of
clusters.

It is important that an engineering meaning in
terms of model-based diagnosis can be given to these
two distances. They are both related to the space of
models for the task of system identification using mul-
tiple models. The wcd represents the spread of mod-
els within one cluster. Since it gives information on
the size of the cluster, a high wcd means that models
inside the class are widely spread and that the clus-
ter may not reflect physical similarity. The bcd is an
estimate of the mean distance between the centers of
all clusters and therefore, it provides information re-
lated to the spread of clusters. For example, a high
bcd value means that classes are far from each other
and that the system identification is not reliable.

As explained in Section 3.2.1, the number of clus-
ters (in system identification, the number of classes of
models) for a data set is unknown. The procedure to
determine the best number of clusters is to run the pro-
cedure for P different numbers of clusters. The crite-
rion used to check if the number of cluster is appro-
priate is the score function of Equation 3. The higher
the value of the SF , the more suitable the number of
clusters. In Section 3.2.1, one of the weakness of the
procedure highlighted was the random choice of the
K first centroids. One solution is to run the algorithm
N times and to select the maximum value for the score
function. Therefore, randomness is controlled by N.
The pseudo-code of the mentioned procedure is given
in Table 2.

To conclude this section, the score function de-
fined above serves two purposes. First, it gives an idea
of the performance of the clustering procedure. Sec-
ond, it allows choice of a realistic value for the number
of clusters. However, this number must be interpreted
with care as explained in Section 4. Reducing the ran-
dom effect of the procedure is done through several
runs of the algorithm to compute the score function
value. Finally, the number of clusters could be fixed
by the expert and therefore this may be considered to
be domain knowledge.

Clusters bcd wcd SF
2 0.69 1.91 0.36
3 0.57 1.54 0.37
4 0.48 1.24 0.39
5 0.41 1.09 0.37
6 0.35 1.03 0.34
7 0.30 0.98 0.31
8 0.27 0.93 0.29

Table 3: Comparison of values for between class distance
(bcd), within class distance (wcd) and score function (SF)
for various numbers of clusters. The randomness is con-
trolled by N = 100.

4 Results and Limitations

The case study used to illustrate the proposed data
mining approaches is explained in Section 2. In this
study, PCA is used to discover independant parame-
ters and to understand to what extend are model pa-
rameters linearly related. Applying PCA on the mod-
els, a set of PC are obtained. The focus is on studying
these PC instead of the models in the feature space.

The main conclusion here concerns the relation-
ships between parameters. Parameters are related
since a few PC explains nearly all the variability in
the data. However, PCA is able to discover only lin-
ear relationships. The only conclusions that can be
made when using PCA are related to the presence of
linearity in the data.

Results from the feature space clustering proce-
dure of Section 3.2 are now presented. The first step
is to run the procedure described in Table 2. Output is
shown in Table 3. According to this table, four clus-
ters are most appropriate for this data since this corre-
sponds to the maximum value for the score function.
This result can also be seen in Figure 2, representing
the value of the SF evolving with the number of clus-
ters. In this case, there is only a global maximum.
However, in certain cases, local maxima can appear.
The engineer is thus able to choose the most reliable
number of clusters among the local maxima.

Once the number of clusters is fixed, the proce-
dure outlined in Table 1 is followed. To judge the
improvement of the methodology with respect to the
standard k-means algorithm, the two techniques are
compared. Figure 3 shows the improvement from a
visualization point of view. The top part of Figure
3 corresponds to standard k-means. The bottom part
is the result of the methodology described in this pa-
per. It is evident that our methodology is better able
to present results visually to engineers.

This methodology has a number of limitations.
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Figure 2: Evolution of the SF with regards to the number
of clusters.

Firstly, results of data mining have to be interpreted
carefully. The user thus has an important role in en-
suring that the methodology is successful. Secondly,
even if the methodology is well applied, results are not
necessarily the most appropriate. For example, data
might be noisy (poor sensor characteristics), or may
have missing values (low sensor quality) or may be
missing useful information (bad sensor configuration)
and this may preclude obtaining useful results.

An example of challenges associated with apply-
ing data mining to system identification is given be-
low. Assume that, after applying data mining method-
ology, three clusters of models are obtained. The
methodology alone is not able to interpret these clus-
ters. Suppose that two clusters group similar infor-
mation. Although the clustering algorithm has gener-
ated three clusters, only the user is able to identify that
there are only two clusters that have physical meaning.
Therefore, data mining is only able to suggest possi-
ble additional knowledge. The process of acquiring
knowledge that is of practical use for decision support
is left for the engineer.

5 Conclusions
A combination of data mining techniques has been
proposed for system identification tasks. Relation-
ships between model parameters and clusters of mod-
els are examples of useful information for engineers.
In order to evaluate clustering, a score function has
been developed which is adapted to the specific task
of system identification. Main conclusions are listed
below:

• Standard data mining techniques such as PCA

Figure 3: Comparison between standard k-means (top)
and the proposed algorithm (bottom). In the first case, two
parameters are chosen to display the clusters. In the sec-
ond, the two first principal components are used.

have to be adapted to obtain meaningful results
in the area of system identification

• Combining data mining techniques, such as PCA
and k-means, helps improve visualization of data

• Evaluation of results obtained through clustering
is difficult. The score function that has been de-
veloped in this work helps in the evaluation

• Application of data mining to complex tasks such
as system identification requires considerable ex-
pertise

Future work involves the use of other data min-
ing techniques to discover hidden relationships among
model parameters. Strategies for models containing a
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varying number of parameters are also under develop-
ment. Finally, a general framework integrating data
mining techniques in the overall system identification
process will be developed.
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