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Abstract: -  This paper presents a new adaptive motion control system including on-line Extended Kalman’s 
filter (EKF) for wheeled robots with nonholonomic constraints on the motion. The presence of uncertainties 
both in the kinematics and in the dynamics is treated using adaptation laws where the Lyapunov’s stability of 
the motion errors is proved. Now, if data from incremental encoders are used for the feedback directly, errors 
can  damage the performance of the motion control. Therefore an EKF is inserted in the adaptive control 
system suitably. The filter above, through recursive predictions and corrections, fuses data provided by multiple 
proprioceptive sensors to obtain good estimations of the feedback signals in terms of cartesian positions and 
orientation. The control algorithm efficiency is confirmed through simulation experiments.  
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1   Introduction 
In recent years much attention has been focused 
upon the control of nonholonomic mechanical 
systems [2]. A mobile wheeled robot is usually 
studied as a typical nonholonomic system, where 
nonholonomic constraints arise under the no-slip 
constraints. Our approach is about motion control of 
nonholonomic robots. The problem of motion 
control is to design a controller such that all the 
closed loop signal are bounded and the motion errors 
(longitudinal, lateral and orientation errors) converge 
to zero. Must research effort has been oriented to 
solving the problem above using only kinematical 
controllers  [1], where the main idea is to define 
velocity control inputs which stabilize the closed 
loop system. Other control researchers have target 
the problem of motion control of nonholonomic 
robots using a backstepping approach [6], [9] which 
allows many of the steering system commands to be 
converted to torques, tacking into account dynamic 
parameters (mass, inertia, friction etc…). Now the 
main issues are: stability and good localization. 
About the stability issue, in [6] the backstepping 
approach has been proposed and a theorem for the 
asymptotical stability of the tracking errors has been 
developed. The fundamental problem of the  
backstepping is the uncertainty of the parameters of 
the robot. So in [4] an adaptive control scheme for 
nonholonomic robots is presented. In the works 
above the problem of on line localization of the robot 
has not been treated. Really, at each sampling instant 
the position of the robot is estimated on the basis of 
the encoders increment along the sampling interval. 
A drawback of this method is that the errors of each 

measure caused by the encoder are summed up. 
Therefore in [5] and [7] the problem of localization, 
i.e. an optimal estimation of the robot’s position, has 
been solved by an off-line sensors data fusion based 
on EKF. An interesting approach has been developed 
in [3], where a conventional PID control strategy 
with a Kalman based active observer controller has 
been used to solve a problem of path following for 
nonholonomic robots.  
In this paper an adaptive  motion control system with 
on-line EKF for nonholonomic wheeled robots is 
presented. The  contributions of this work include:  
a) merging of adaptive kinematic and dynamic  
controllers where stability and convergence analysis 
is built on Lyapunov’s theory. So the problem of 
kinematical and dynamical parametric uncertainties 
of the robot is solved; 
b) a discrete time state space representation to apply 
EKF and a methodology for solving the on-line 
sensors data fusion problem through filters above. In 
a motion control system, if data from encoders are 
used for the feedback only, then noises can damage 
the motion control performances in terms of position 
and orientation errors. Therefore an EKF has to be 
introduced in the adaptive control system above to 
fuse data from multiple proprioceptive sensors (i.e. 
encoders, vector compass and sensor position) and to 
estimate the filtered feedback signals, i.e. the actual 
position of the robot, by on-line recursive predictions 
and corrections.   
This paper is organized as it follows. Section 2 
presents the kinematic and dynamic continuous time 
models of wheeled robots for our control strategy. 
Section 3 presents a discrete time state space 
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representation to apply EKF. In Section 4  a method 
for adaptive kinematic and dynamic control of the 
system above is developed. Section 5 presents a 
strategy for on line sensors data fusion based on EKF 
positioned in the feedback of the adaptive control of 
the previous section. Section 6 shows results of 
experimental simulations to confirm the validity of 
the proposed control algorithm. 
 
2 Time continuous models for wheeled 
robots  
Let us consider a mobile vehicle of Fig. 1 with 
generalized coordinates nℜ∈q , subject to m 
constraints. The well known dynamic model in 
generalized coordinates is [6], [9] : 

λqAτqEqqqCqqM T )()(),()( −=+ &&&&                     (1) 

where nn×ℜ∈)(qM  is a symmetric, positive 
definite matrix; nn×ℜ∈),( qqC & is the centripetal 
Coriolis matrix; 1×ℜ∈ nτ  is a vector including 
torques applied to right and left wheels; 

nm×ℜ∈)(qA is the  matrix of nonholonomic 
constraints  and 1×ℜ∈ mλ  is a vector of lagrange 
multipliers.  Supposing that the m constraints are 
time invariant leads to: 

0qqA =&)(                                                               (2) 

Let )()( mnn −×ℜ∈qS  be a full rank matrix made up 
by a set of smooth and linearly independent vectors 
spanning the null space of A(q), i.e., 

0qSqA =)()(                                                        (3) 

It is possible to find a mn−ℜ∈v  vector as it follows: 
( )ω,u=Tv                                                             (4) 

where u and ω are respectively the linear and angular 
body-fixed (X,Y) velocities. We indicate with 

),( 00 yx  the 0P  coordinates (see Fig. 1) in an inertial 
cartesian frame (x,y) and with φ the robot orientation 
with respect to the inertial basis.We indicate with r  
the ray of the wheels and with b the distance from 
the wheels to the longitudinal axis. Let Pc be the 
mass center of the vehicle, which is on the X-axis, 
and let d be the distance from P0 to Pc. For the later 
description, mc is the mass of the vehicle without the 
driving wheels, mw is the mass of each driving 
wheels, Ic, Iw and Im are the inertia moments of the 
body around a vertical axis through P0, the wheel 
with a motor about the wheel axis, and the wheel 
with a motor about the wheel diameter, respectively. 
We indicate with rθ&  and lθ&  the angular velocities of 
right and left wheels respectively. The relation ship 
between (u,ω) and ( ), lr θθ && is the following: 
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Equations (5) can be rewritten as it follows : 
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where:  
[ ] [ ]ωθθ        ulr == TT vη &&                                                     

Now we consider the following vector: 
[ ]      00 φyx=Tq                                                 (7) 

We can write the following kinematic model: 

S(q)η=




















−






=

















l

r

cc
cbcb
cbcb

y
x

θ

θ
φφ
φφ

φ
&

&

&

&

&

sinsin
coscos

0

0

           (8) 

where: 
brc 2/= . 

About the dynamic model in body fixed coordinates 
(X, Y), differentiating (8), replacing it into (1) and 
performing additional operations with S(q) lead to: 

BτηηVηM m =+ )(&                                                 (9) 
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[ ]lrdiag ττ      ];1   1[ == TτB                                                        
where: 

mwccwc IbmIdmImmm 22   ;2 22 +++=+=       

The M  and mV  matrices are respectively the Inertia 
and Coriolis matrices in body-fixed (X,Y) 
coordinates system (see Fig. 1). The vector τ  has in 
his components the torques applied to the right and 
left wheels respectively.  
Substituting (6) into (8) leads to: 
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Fig.1 . Constrained wheeled robots with references 
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3  A discrete time kinematic model   
Preliminarily we consider the following change of 
coordinates: 
[ ] [ ] TT R  

00
 

321 )( )( )()()( )( )( ttytxttt φφξξξ =  (11) 
where: 
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Applying the transformation (11) to model (10) lead 
to a chained form model [8]. An analogical to digital 
converter (ADC) provides to obtain samples of the 
chained form model. We assume constant sampling 
period Ttk =∆  and denote ZkTkk ∈+=+ ,)1(1 . 
So,  after some algebra, the perturbed sampled state 
space model in the new coordinates yields: 

 );()()()()1( kkkkk wχξAξ ++=+               (13) 

Zkwww ∈==   ];  [ ];  [ 321321 ξξξTT ξ  w       
where w(k) is the process noise with Gaussian 
statistical distribution. Statistical mean and variance 
of the noise above are the following: 

{ } { }
{ } Qww

0)()ww(0w
T

T

=

≠==

)()(
    ;)(

kkE
jiforjiEkE
      (14) 

where Q is the diagonal covariance matrix. Also it is: 
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Remark 1. Note that the state space representation 
(13) is linear.  
Remark 2. Really noised data on rθ&  and lθ& are 
provided by encoders. They have to be processed by 
equations (6) and (10) to obtain informations on 
position and orientation of the robot. So an 
additional noise w has been added to model (13).  
About the outputs, orientation and cartesian positions 
provided by a vector compass and position 
proprioceptive sensor respectively have been 
considered. So, if q coordinates are used, it yields: 

)()( kk Cqz =                                                 (16) 
where z is the output vector and C is an identity 
matrix. Applying the transformation (11) and 
considering additive measurement noise n(k) lead to: 

)())(()()()()( kkkkk nξgnξCRz 1 +=+= − φ  (17) 
where the statistical parameters of the noise are: 
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and R is the diagonal covariance matrix. Note that, 

in consequence of the rotation (11), the g function of 
(17) is naturally nonlinear. Also w(k) and n(k) noises 
are independent. We may write a new governing 
equation that linearizes the measurement process. It 
yields: 
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where )(k*ξ  is solution of the process model (13) 
where the noise w is assumed to be zero. 
Remark 3. With respect to q coordinates, the new 
reference in ξ  coordinates is with the same origin of 
the world frame but rotated so as to align the axis 
with the robot orientation. Therefore the noises of 
the new iξ (i=1,2,3) variables are expressed in a 
frame attached to the robot body. 
 
4  Adaptive Control of wheeled robots 
with parametric uncertainties  
Let the reference trajectory of the robot be: 

rrrrrrrr uyux ωφφφ === &&&   ;sin   ;cos           (21) 
were ur>0 for all t and ωr are the reference linear and 
angular velocities. The motion errors between the 
reference position [ ]T

rrr yx φ,, and the actual 

position [ ]Tφ,, yx can be expressed in the vehicle 
local frame (X, Y) as [8]: 
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Consider the following kinematic control law : 
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After some computations, the closed loop model 
yields: 
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In [6] the asymptotical stability of the equilibrium 
point of the closed loop model (24) has been proved. 
Now suppose that the values of the kinematical 
parameters  b and r of the model (8) are not known 
precisely. Preliminarily one consider the following 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         68



  

position: 
rbr /  ;/1 == βα                                              (25) 

The estimation errors of the kinematical parameters 
can be defined as it follows: 

βββααα −=−= ˆ  ;ˆ                              (26) 
where α  and β  are the estimated values. So, from 
(5), (8) and (24), after some calculations, it results: 
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It is possible to formulate the following theorem. 
Theorem. Let the kinematic model and the control 
law be (10) and (23) respectively.  If the linear and 
the angular velocities are bounded functions and the 
angular velocity reference converges to zero, by 
choosing of the following adaptive parametric laws: 

0,  /)sin(   >== δγδωβγα φ yccx keue &&            (28) 
the solutions of the differential equations (27), i.e. 
longitudinal position error xe , lateral  position error 

ye  and orientation error φe  are bounded and 
converge to zero. 
Proof Track. We define an extended state vector:  

[ ]βαφ
ˆ  ˆ      eee yx=Te        

A Lyapunov function can be chosen as it follows: 
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The function above is positive definite. Calculating 
the time derivative of (29) and substituting (27) into 
it lead to: 
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Now considering adaptive laws (28) and substituting 
them into (29) lead to the stability of the motion 
errors (22). By applying Barbalat’s Lemma one 
concludes on convergence to zero of xe  and φe .  
Considering the third equation of (27) and 
substituting (23) into it, one concludes on the 
convergence of ye  if rω  converges to zero (Q.E.D).    
That done, the adaptive kinematic control law yields: 
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where cu  and cω  are given by (23). Now suppose 
that the values of the dynamical parameters of model 
(9) are not known. One consider a property of the 

dynamical model so that: 
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Also the kinematical model (8) appears as: 
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Based on adaptive backstepping approach [4], we 
use the following torques control law: 
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where lτ  and rτ  are the control torques applied to 
the left and right wheels; iθ̂  is the estimation of 

iθ ,(cf. eq. 36); Y  and p  are given by (32) and (33); 
p̂  is the estimation of the dynamical parameters of 
p  vector (cf. eq. 32); iΣ  (i=1,2) matrices are given 
by (34);  V is given by (29);  S  is the Jacobian 
matrix (cf eq. 8) and it depends on estimated 
kinematic parameters iθ̂ ; η~  is the following 
velocity error: 
                      [ ]T

21
~  ~~ ηη=−= ηηη c                   (36) 

where cη  is given by (31) and η  is the dynamical 
velocity (cf. eq. 9) ; ΨK d , and iΛ are simmetric 
and positive definite matrices with appropriate 
dimensions. In this way the velocity error η~  
converges to zero and, based on the theorem 2, the 
motion errors (22) are bounded and converge to zero. 
 
5  On-line data fusion using EKF 
From output data provided by encoders, a noised 
information on the actual feedback position signal q 
(cfr. eq. 7) for the adaptive control system of the 
previous section may be obtained suitably. So an 
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EKF has to be introduced in the adaptive control 
system. From data of more sensors (i.e. data fusion 
with encoders, vector compass and position sensor) 
the filter above estimates a filtered position signal for 
the feedback. Consider the sample state model (13) 
in ξ  coordinates to elaborate the encoders data. Also 
consider the output equations )(ky∆  of (19) to have 
position and orientation measurements from vector 
compass and sensor position. We desire estimates 

)(ˆ kξ  of the state )(kξ  based on observation of the 
output y(k) alone. The Kalman’s filtering task is to 
determine a Kalman gain K to minimize the variance 
of the estimation error, which is denoted D(k): 

{ }TξξξξD ))(ˆ)())((ˆ)(()( kkkkEk −−=      (37)                     

Let us consider a state estimate )(kξ so that:  

)1()1(ˆ)1()( −+−−= kkkk χξAξ                     (38) 
with error variance given by: 

{ }TξξξξF ))()())(()(()( kkkkEk −−=           (39) 
Consider the incremental update (cf. eqs. 19,20): 

))()()()(()()(ˆ kkkkkk ξHyKξξ g
ξ ∆−∆+∆=∆ (40)        

where 13)( ×ℜ∈kK  is the Kalman’s gain. Adding 
)(* kξ on both sides of (40) and considering 

)()(* kk ξξ =  lead to:  

))(()()(()()(ˆ kkkkk ξgyKξξ −+=                    (41)            
After some computations, the solution of the 
minimization  of D(k) (cf. eq. 37) is: 
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The steps of the Kalman’s algorithm for the sensors 
data fusion are the following: 
-evaluate the gain factor by using the first equation 
of  (42); -solve the equation of measurement update 
(41); -update the error variance by using the second 
equation of (42); -prediction of the future state by 
using (38);-prediction of the covariance error, where: 

QAPAF T +=+ )()()()1( kkkk ;                   (43) 
-update the time and repeat the steps.  
In conclusion one provide to reconstruct a )(ˆ kq  
vector of position in the world frame with a DAC 
and zero order hold to have analogical informations  
and to apply the adaptive control laws (31) and (35). 
    
6  Experimental simulations 
Experimental tests are performed in a nonholonomic 
robot. About the hardware, a PCL 1800 card with 
D/A 12 bit converter is used to generate reference 
voltage from the control torque (35); drivers LMD 
18200 provide to the current generation for the DC 

motors of the wheels; a PCL 833 card generates the 
angular velocities of the wheels from data of the 
encoders; a microcontroller DALLAS 89C420 
receives orientation data from vector compass 
(resolution of 0.1 degree), data on x and y 
coordinates from a position sensor (maximum 
resolution of 800 counts/inch) and transmits them to 
on board PC through serial port. The PC on board 
communicates with a PC (host) where the adaptive 
control laws (31), (35) and the on-line EKF are 
implemented by using Matlab Simulink. The real 
parameters of the  nonholonomic robot are: 
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The parameters of the adaptive laws (28) and of the 
adaptive dynamical control law (35) are: 

 *5 *5  20.75;  ;005.0 32 Iψ ;IK d ==== δγ        
where I2  and  I3  are identity matrices (2x2) and 
(3x3) respectively. About the kinematic control law 
(23),  the parameters are chosen as: 

   5=== φkkk yx         
The initial conditions for the reference and robot 
positions are the following: 

)48.3,0,0())0(),0(),0(( radyx rrr =φ  
)68.5,20,30())0(),0(),0(( radyx −=φ  

The sample time for the EKF is T=10-4 s. 
The initial values for the EKF parameters are: 
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We compare two cases: a) adaptive motion control 
without EKF where encoders data are used for the 
feedback directly; b)adaptive motion control with 
EKF where encoders informations are fused with 
data of the other sensors before the feedback.  
Fig. 2 shows the reference trajectory. Since it 
satisfies the equations (21), it is nonholonomic.  
Figs. 3 and 4 show the longitudinal and lateral errors 
of the robot by using our adaptive control strategy 
with and without EKF. Note that the EKF filters the 
measurement noise in a good way. 

 
Fig.2. Reference trajectory 
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Fig. 3. Longitudinal motion errors without EKF (a) 

and with on-line EKF (b) 

 
Fig.4. Lateral motion errors without EKF (a) and 

with on-line EKF (b) 
Figs. 5 and 6 show the adaptation of the parameters.  
Note that the adaptive control is direct. In fact the 
steady state values of the parameters are constants. 
However they are not the physical values, but the 
motion errors are bounded and converge to zero 
suitably.  

 
Fig.5. Adaptation of the dynamical parameters 

   
Fig. 6. Adaptation of the kinematical parameters 

 
Also the EKF assures a good convergence of the 
parameters above. In fact, since the adaptive control 
is direct, in case of adaptive control without EKF the 
noised feedback signal may perturb the parameters 
adaptation during the transient and the steady states.    

7  Conclusions 
In this paper we have considered a direct adaptive 
EKF control for nonholonomic robots. We have 
shown dynamic and kinematic adaptive control laws 
to solve the problems of uncertainties of the robot 
parameters where the Lyapunov’s stability has been 
proved. Since the adaptive control of our paper is 
direct, the steady state values of the parameters 
resulting from the adaptation are constant and are  
not the physical values. The values above assure the 
boundedness and convergence to zero of the position 
errors. Since data of the encoders are corrupted by 
noises, we have inserted an EKF in the feedback of 
the control system. We have shown that, based on 
data fusion of more measurement sensors, the EKF 
estimates the filtered position of the robot for the 
feedback. The positions errors of the experimental 
studies and the good parametric adaptation confirm 
the efficiency of the EKF and of our adaptive control 
strategy.        
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