
 

Extensible Multipurpose Simulation Platform 
 

 ENN TYUGU  

Institute of Cybernetics 

Tallinn Technical University  

Akadeemia tee 21, 12618 Tallinn 

ESTONIA 
 

 

Abstract: - This is a description of a multipurpose simulation platform that includes numerous simulation 

engines and is intended for application in a variety of engineering domains. The platform supports model-

based software development and uses structural synthesis of programs for translation of declarative 

specification of simulation problems into executable code. The platform is being developed as open software 

and its extensions can be written in Java and C, and included into the simulation packages by using the 

language development tool called Class Editor. 

 
Key-Words: - Multipurpose simulation, Hybrid simulation, Model-based software, Extensible specification 

language. 

 

 

1   Introduction 
This work concerns an ongoing project, the aim of 

which is to develop an open software platform for 

multipurpose and large-scale simulation. The term 

large-scale simulation is being used here for 

denoting both computationally intensive as well as 

heterogeneous (hybrid) simulation problems. We 

expect that, in the future, simulation problems will 

be not only more computationally heavy, but also 

considerably more complex in the sense that a single 

problem may require orchestrated usage of 

numerous simulation engines, and will be always 

performed in a distributed environment.  The present 

situation and a short-term view of the large-scale 

simulation have been described in the reports [4], 

[5]. However, these reports are based on the 

experiences of experts in narrow application 

domains referring mainly to their own domains. We 

expect to see considerably more interaction between 

the different domains in the future. Although the 

Japanese Earth Simulator project that uses huge 

computing power is a successful example of large-

scale simulation [6], we hope that the future of 

simulation belongs to fusion of different simulation 

tasks, first of all, in engineering domains performed 

by multidisciplinary teams.  

 

Viewed from a traditional simulation perspective, 

the present work concerns integrated software 

infrastructure of simulation platforms. 

 

2   Conceptual design of the platform 
In this section we first discuss requirements to a 

large-scale multipurpose simulation platform. 

Thereafter we present solutions on a quite abstract 

knowledge level, without implementation details. 

We are going to present the implementation of the 

core platform in the next section.  

 

2.1 Requirements 
Requirements from the user’s point of view concern 

language, models, simulation engines, libraries and 

computing environments. We have to consider the 

usability, extensibility, maintainability and 

performance. 

 

2.1.1 Language   
We need a language that is suitable for describing 

simulation problems as well as for describing new 

extensions to an existing simulation environment. In 

the other words – we need a knowledge 

representation language. This language must be 

extensible and easy to use. This can be achieved 

only by developing declarative language with a 

simple syntax and precise semantics.  

 

Graphical description of simulation objects is a 

natural requirement. Hence, the language must have 

a graphical representation. It is highly useful to have 

simple translation from graphical representation into 

textual representation. This will guarantee 

transparency of the graphical language.  

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         738



2.1.2 Models 
Object models have always played a central role in 

the simulation software. Hence, it is natural to 

expect that the simulation platform will support 

model-based software development. In this case, 

models must be hierarchical with unlimited depth of 

hierarchy.   

 

2.1.3 Simulation engines 

As we are developing an extensible and multi-

purpose simulation platform, we have to support 

several simulation engines – for discrete event 

simulation, for simulation of synchronous as well as 

asynchronous systems, for simulation of dynamic 

systems described by differential equations of 

different kind. We have also to support the 

development of new simulation engines. We have to 

guarantee the interoperability of several simulation 

engines to such extent that they could be used 

cooperatively in one and the same simulation. This 

can be achieved by developing simulation engines as 

regular components of the extensible simulation 

software.  

 

2.1.4 Libraries 
Multi-purpose simulation in different domains 

requires large amount of domain-oriented software. 

This software should be presented in some form of 

component libraries that are composed according to 

rules that guarantee the interoperability. Tools for 

developing and handling the libraries must be 

included in the simulation platform.   

 

2.1.5 Distributed computing and networking 

A large-scale simulation platform must support 

parallel and distributed computing on several levels. 

It is recommendable that networking will be 

included in the simulation software in a seamless 

way, including grid computing.  

 

2.1.6 Interoperability 

Interoperability and portability can significantly 

improve the usability of the simulation software. 

Hence we require that the simulation platform must 

be easily portable and support interoperability with 

existing popular simulation and visualization tools, 

e.g. MathLab and Maple at least on the data 

exchange level.   

 

2.2 Solutions 
The basic principle of design of this platform is the 

separation of knowledge level from implementation. 

This is valid for architecture of the simulation 

platform and for the specification language as well 

as for components that are developed for particular 

applications.  

  
2.2.1 Knowledge architecture 
In order to present architecture of the simulation 

platform on knowledge level, without referring to its 

implementation, we use the concept of knowledge 

module as defined in [7]. A knowledge module 

(called also a knowledge system) is a knowledge 

representation and handling mechanism that must be 

presentable in a formal way, e.g. as an interpreted 

deductive system. We also use hierarchical bindings 

(presented here by solid lines) and operational 

bindings (presented by dashed lines) of knowledge 

modules as described in [7] to show their interaction 

in a system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Knowledge architecture of the simulation 

platform 

 

Fig. 1 shows knowledge architecture of the 

simulation platform. Simulation domains (Domain 1 

to Domain k) may have their own knowledge 

systems, but they are supported by knowledge 

representation and handling mechanisms, i.e. by 

supporting knowledge systems (SKS) included into 

the kernel of the platform. All simulation problems 

use common hierarchically connected visual and 

textual knowledge systems for user interaction.  

 

2.2.2 Languages 

The platform supports a textual and a visual 

specification language for specifying simulation 

problems. The textual specification language has a 

simple and a rather conventional syntax of 

declarative compositional languages. It enables one 

to specify typed objects and bind them with each 

 

Visual KS 

Textual KS 

Domain 1 Domain k 

       Supporting knowledge systems (SKS) 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         739



other by connecting their components by equalities. 

Numeric variables can be bound also by algebraic 

equations. Constant values can be assigned to 

variables of any type, as soon as the value has a 

textual representation. The textual specification 

language enables one also to specify programs by 

writing axioms about their applicability, i.e. by 

giving their pre- and postconditions. Types of 

components can semantically represent objects as 

well as relations between the objects. From a users 

point of  view they are just concepts. Extensibility of 

the language is achieved by introduction of new 

types. The following is core of the language: 

 

1. declaration of a component:  

<type> <idenitfier>; 

This declaration specifies a component of a scheme 

with given type, and its name given by identifier.  

 

2. binding:  

<name of component>.<name of port> = <name of 

component >.<name of port>; 

This statement specifies an equality between 

variables of components (ports). These variables are 

also attributes of attribute models of components. 

 

3. valuation: 

     <name of component>.<name of port> = 

<value>; 

This statement defines a functional dependency with 

no inputs and one output that gets a constant value.  

Form of axioms written in this language depends on 

the logic used by the simulation engine and 

underlying knowledge system. 

 

The following simple example of the usage of the 

specification language is a description of a minimax 

problem that uses components of types Max, Min 

and Model. The goal is to find the minimal value 

(depending on some variable y of the model object 

m) of the maximal values depending on a variable x 

on the model object m. (Here we use syntactic sugar 

for writing bindings in line with component 

declaration and omitting the name of the 

component.) 

 
Model m; 

Max max arg=m.x, val=m.result; 

Min min arg=m.y, val=max.maxval; 

 

The visual language corresponds to textual language 

without axioms. Each type of objects can have a 

visual representation – an image supplied with ports 

for binding objects with each other. A port is a 

component of an object made visible graphically. A 

specification is a scheme where objects are 

connected with each other via ports. The example 

from above has a visual specification as shown in 

Fig. 2. 

Fig. 2 Visual specification of the minimax problem 

 

2.2.3 Model-based computing 

We foresee the development of several supporting 

knowledge systems of the platform. However, there 

is one SKS that has been developed for model-based 

computing. This SKS is intended for integration of 

all other SKS. It supports representation of 

knowledge both in logic and in a language of higher-

order constraint networks. The specification 

language has been tailored already in such a way 

that it enables one to present models for this SKS.  

 

The specification language and representation of 

models support the hierarchical structure of models. 

If we look closer at the object max that has the type 

Max, we can see, that it has a model described by 

the specification: 

 
Number arg; 

Number fun; 

Number result; 

(arg⊃val)⊃maxval{implementation}; 

 

The axiom here is written in a propositional 

language with propositions denoting the 

computability of objects. The axiom tells us that 

using implementation we can compute the maxval, 

i.e. the maximal value of a function, as soon as we 

can compute val from arg, where val stands for the 

value of the function and arg stands for the value of 

its argument. Model of Min is similar. Binding the 

variables arg, val etc. in a proper way, as we have 

done it in the example, gives us a possibility 

automatically to compose the algorithm and 

generate the code for solving the problem, i.e. for 

finding the value of min.minval. The model object m 

must have its own specification, and this can be 

large and hierarchical itself, but in the simplest case 

it can be just a matrix, where x and y are number of 

x     m 
      y 

max 

min 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         740



a row and number of a column, and result is an 

element of the matrix in the respective position. 

Here we gave only a very superficial presentation of 

the model-based SKS of our platform. At a closer 

look one can see that our approach includes 

automatic composition of algorithms. This is 

performed by a method called structural synthesis of 

programs (SSP).  For detailed description of this 

method we refer to [3].   

 
2.2.4 Java and open source  
We have chosen Java as the implementation 

platform of the kernel of the simulation platform. 

This is justified by the useful properties of Java: 

good portability and interoperability, support for 

distributed computing and open source ideology. 

The kernel of our platform has been developed in a 

way that does not restrict the usage of Java for 

programming components. All Java types and 

classes can be used as types of objects in 

specifications. For instance, we have used the 

Number type in the models of Max and Min in the 

example above. 

 

Performance-critical components of any domain can 

be implemented in C or C++ and included as native 

methods in Java. This should guarantee sufficient 

good performance of the whole system. 

 
 

3   Implementation 
 The implementation strategy of the present project 

is the following. First, a core platform has been 

implemented that supports an extensible 

specification language as well as component-based 

and model-based software development. Simulation 

engines are added and applications are developed 

gradually, porting some applications, e.g. simulation 

of dynamics of hydraulic systems [2] from older 

platforms. New libraries of components related to 

specific application domains will be developed 

cooperatively using the open source approach.  

 

3.1 Components 
Having chosen Java as the software platform, we 

should accept Java classes as components. However, 

in general, the components must be supplied with 

specifications that represent their models and 

include information about their usability like in the 

case of Max in the example above. Therefore, we 

have introduced a concept of a metaclass that is a 

Java class supplied with a metainterface. 

Metainterface is a specification of interface 

variables and functional dependencies that bind 

these variables. It is written as a Java comment in 

the class text. The functional dependencies are 

implemented as methods of the class. Interface 

variables are abstract variables corresponding to the 

entities of a problem domain. Metaclass for Max for 

integer values (with some minor syntactic 

differences from a specification given above, e.g. -> 

instead of ⊃) is as follows: 

 
class Max 

{/*@ 

     specification Max { 

    int arg, val, maxval; 

  [arg->val]->maxval{getMaxVal}; 

    } 

 @*/ 

 

    public int getMaxVal(Subtask sbt)  

    throws Exception { 

     … 

    return maxval; 

    } 

} 

 

In the visual language, a metaclass has a visual 

representation and a description of its visual 

properties as well. Metaclass together with its visual 

features is called a visual class. Metaclasses and 

visual classes can be built hierarchically, e.g. the 

minimax specified above can be declared to be a 

component. 

 

3.2 Core platform 
We have developed a software environment 

CoCoViLa that is the core platform for simulation 

[1]. This environment provides tools for developing 

visual classes and for constructing simulation 

packages. From a user’s point of view the tool 

consists of two components: Class Editor and 

Scheme Editor.  

 

3.212 Class editor 

The tool for extending the language is Class Editor, 

which supports the language designer in defining the 

visual aspects of classes, and also their logical and 

interactive aspects. Fig. 3 shows the development of 

a component Motor in the window of the Class 

Editor. This component is used in simulation of 

mechanical drives. We can see the image of Motor 

and a pop-up window for defining properties of the 

visual class. 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         741



 

Fig. 3. Class Editor window 

 

Functional properties of visual classes are 

implemented as metaclasses. A user interface 

(including toolbars and menus) is automatically 

generated from the language definition. Results of a 

visual language development are stored in a package 

that is usable by the Scheme Editor. 

 

3.2.2 Scheme editor 

The Scheme Editor is a tool for the simulation 

expert. It is intended for developing schemes of 

simulated systems, compiling and running programs. 

It is used for compiling (synthesizing) programs 

from the schemes according to the specified 

semantics of a particular domain. The scheme editor 

is implemented using Java Swing library. It provides 

an interface for visual programming – putting 

together a scheme from visual images of classes. 

The environment generated for a particular visual 

language allows the user to draw, edit and compile 

visual sentences (schemes) through language-

specific menus and toolbars.  

 

Figure 4 shows the scheme editor in use, when a 

package for calculating the loads and kinematics of 

a gearbox has been loaded. Gears are connected to 

each other by arranging them on top or next to each 

other; lines connect other objects (motor and 

monitoring device). The toolbar at the top of the 

scheme is for adding objects and relations to the 

scheme. One pop-up window is for instantiating 

object attributes, another pop-up window is for 

manipulating the scheme – deleting and arranging 

objects etc. The scheme editor is fully syntax 

directed in the sense that the correctness of the 

scheme is forced during editing. 

 

 
 

Fig. 4. Scheme Editor window 

 

3.3 Simulation engines 
The core platform supports interoperability between 

the simulation engines developed as metaclasses. 

Here we discuss briefly a simulation engine for state 

transition systems. This simulation engine is 

applicable in principle to all dynamic systems 

described by ordinary differential equations.  In 

particular, in a prototype of our platform we have 

used the Runge-Kutta method in the method impl 

that the axiom describes.  

 

A control structure for simulation of state transition 

systems (including synchronous real time systems) 

is described by the following axiom: 

 
(state⊃nextstate)∧initstate⊃process{impl}  

 

The nested implcation state⊃nextstate requires to 

compute the next state nextstate from a given state 

of a system. Implementation impl of this axiom 

produces the process, as soon as an initial state 

initstate and a program for computing nextstate form 

a given state are given. Different versions of this 

control structure have been used in simulation 

packages developed in a system that has been a 

prototype to our system and that uses the same kind 

of logic [8]. In such a case, to specify a simulation 

problem means to compose a model of the simulated 

system from predefined components. The software 

components with memory will have variables state 

and nextstate that all together constitute the state 

vectors state and nextstate of the simulated system. 

These state vectors are represented in the axiom 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         742



given above. To bind states of components with the 

state vector, the specification language has a special 

alias construction and wildcard. The declaration  

 
alias state = (*.state);  

 

means that state is a tuple, including all variables 

named state occurring in the components of the 

specifed model.  

 

If the components are dependent on time, then the 

variable time can be added to the axiom and bound 

with time of every component together with state 

vectors. This gives us the following fragment of 

specification: 

 
alias time = (*.time); 

alias state = (*.state);  

alias nextstate = (*.nextstate); 

alias initstate = (*.initstate); 

(state ∧ time ⊃ nextstate) ∧ initstate ⊃ 

process{impl}; 
 

3.4 Packages 
In conformance with the Java style, libraries of 

components are organized as packages. (See the 

“Package” command in the menu bar of the Scheme 

Editor in Fig. 4.) However, in our case, a package 

includes more than a Java package does. Besides 

metaclasses, it includes a package description in 

XML format that can be used by components even 

at runtime. 

 

We have developed prototypes of packages for 

simulation of dynamic systems, logic circuits, 

mechanical transmissions. A large package for 

simulation of hydraulic systems has been used in a 

prototype of the present platform for a number of 

years [2]. 

 

 

4   Conclusion 
The developed core of multipurpose simulation 

platform has been tested on a number of simulation 

packages, and has shown its good usability and 

performance. The decision of using Java without 

restrictions on its classes for component 

development has been justified by the advantages 

we have got: good portability, easy extensibility, 

support to multithreading and network computing. 

The decision of relying on an advanced knowledge 

system that includes structural synthesis of programs 

has been justified by the easiness of implementation 

of the specification language and its extensions.  

 

Acknowledgements 
This work has been supported by the grant No. 6886 

of the Estonian Science Foundation. 

 

 

References: 

[1] P. Grigorenko, A. Saabas, E. Tyugu, Visual tool 

for generative programming. - ACM SIGSOFT Software 

Engineering Notes, Vol. 30, No. 5, 2005, pp. 249-252.  
[2] Grossschmidt, G., Harf, M. Modelling and 

simulation of hydraulic systems in NUT 

programming environment. In: Viertes Deutch-

Polnises Seminar on Innovation und Fortschritt in 

der Fluidtechnik. Sopot.  2001, pp. 329-348. 

[3] M. Matskin and E. Tyugu. Strategies of structural 

synthesis of programs and its extensions. Computing 

and Informatics, Vol. 20, pp. 2001, 1 – 25. 
[4] Office of Science U.S. Department of Energy . A 

Sscience-Based Case for Large-Sscale Simulation. 

http://www.pnl.gov/scales/docs/volume1_72dpi.pdf, 

2003. 

[5] Office of Science U.S. Department of Energy. 
Building a Science-based Case for Large-scale 

Simulation,  http://www.pnl.gov/scales/docs/ScaLeS 

_v2_ draft_toc.pdf, 2003. 

[6] Y.O. Takahashi, K. Hamilton, and W. Ohfuchi, 

Explicit global simulation of the mesoscale spectrum of 

atmospheric motions. Geophys. Res. Lett., L12812, 

doi:10.1029/2006GL026429, 2006. 

[7] E. Tyugu. Understanding Knowledge Architectures. 

Knowledge-Based Systems. Vol. 19, No. 1, 2006, pp.  

50–56. 

[8] E. Tyugu and R. Valt. Visual programming in NUT. 

Journal of visual languages and programming, Vol. 8, 

1997, pp. 523 - 544. 

 

 

 

 

 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         743


