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Abstract: - N. Karmarkar ([1]) has shown how a linear program with inequality
constraints may be transformed into a normed linear program with equality con-
straints whose feasible solutions are probability distributions. In looking for the
optimum of normed linear programs he used standard optimization techniques
from multivariate calculus. The objective of this paper is to develop the proba-
bilistic search for the optimum solution of a normed linear program, proposed in
[2], using Pearson’s ([3]) χ2-indicator and the symbolic computing. The approx-
imation of the optimum solution based on heuristic simulation is also discussed.
Key-words: - simulation, symbolic computing, linear programs, minimum χ2

estimation, probabilistic search for optimum.

1 Introduction
The main objective of the paper is to show
how simulation and symbolic computing may
be used in approximating the optimum solu-
tion of linear programs. Different variants of
the Simplex Algorithm are currently used for
solving linear programs. Basically, this algo-
rithm starts from a corner point of the con-
vex feasible space and moves, step-by-step, to
a neighbouring corner point until, eventually,
the optimum corner point is found. Nobody
has proved thus far that such a search strategy
is optimum. In 1984, Karmarkar [1] has pro-
posed another strategy, looking for intermedi-
ary solutions inside the feasible space and not
on its frontier as the Simplex Algorithm does.
In presenting his method, he first ingeniously
showed that each linear program with inequal-
ity constraints may be put in a normed form,
which is a linear program with equality con-
straints whose feasible solutions are probability
distributions, namely:

min
x
z =

n∑
j=1

cj xj (1)

subject to:∑n
j=1 aijxj = 0, (i = 1, . . . ,m), (2)∑n

j=1 xj = 1, (3)
xj ≥ 0, (j = 1, . . . , n), (4)

for which the point (1/n, . . . , 1/n) is a feasi-
ble solution and the optimum z-value equals 0.
Surprisingly, any linear program may be put
in this form and, as shown by the above con-
straints, the feasible solutions x = (x1, . . . , xn)
are probability distributions with n compo-
nents. However, Karmarkar’s method of solv-
ing the normed linear program does not use
any kind of probabilistic approach and relies
on standard optimization techniques from mul-
tivariate calculus mainly based on the manip-
ulation of the gradient. Numerical results ob-
tained when dealing with large numbers of vari-
ables and constraints have shown that Kar-
markar’s method is faster than the traditional
Simplex Algorithm. However, it is quite labo-
rious. Details about Karmarkar’s method may
be found in Winston ([4], pp.181-182, 591-599).

The objective of this paper is to discuss a
probabilistic search strategy for the optimum
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of normed linear programs using the classic
Pearson’s χ2 indicator and to use, alternatively,
heuristic simulation for approximating the op-
timum solution.

2 A probabilistic search for optimum
Pearson’s χ2 indicator from mathematical
statistics, introduced in [3], namely,

χ2(x : y) =
n∑
j=1

(xj − yj)2

yj

measures how different a new probability dis-
tribution x = (x1, . . . , xn) is with respect to a
given probability distribution y = (y1, . . . , yn).
Obviously, χ2(x : y) = 0 if and only if xj = yj ,
for all j = 1, . . . , n. Using the classic La-
grange multipliers method it is easy to see that
the optimum solution x = (x1, . . . , xn) of the
quadratic program:

min
x
χ2(x : y), (5)

subject to the constraint (3) and:

n∑
j=1

dijxj = fi, (i = 1, . . . ,m),

is given by:

xj =

[
1 +

m∑
i=1

αi
2

(
dij −

n∑
k=1

dikyk

)]
yj , (6)

for j = 1, . . . , n, where (α1, . . . , αm) is the so-
lution of the linear system of equations:

m∑
`=1

α`
2

n∑
j=1

(
d`j −

n∑
k=1

d`kyk

)
dijyj =

= fi −
n∑
j=1

dijyj , (i = 1, . . . ,m). (7)

It is easy to solve the linear system (7), but
the components of the optimum solution (6)
are not all necessarily nonnegative.

Going back to the normed linear program
given in Section 1, we define the following
search algorithm where at each step we are
looking for the closest probability distribution
to the current solution subject to a certain level
of the objective function of the initial normed

linear program. Subsequently, this level is min-
imized by keeping the new solution feasible:

Initial Step: Find the closest probability dis-
tribution x = (x1, . . . , xn) to the starting uni-
form distribution:

y =
(

1
n
, . . . ,

1
n

)
,

by solving (5), subject to the initial constraints
(2), (3) and the new constraint:

n∑
j=1

cj xj = z, (z ≥ 0). (8)

As the solution obviously depends on the level
z of the initial objective function of the normed
linear program, find the minimum value of
z such that the corresponding solution x =
(x1, . . . , xn) thus obtained also satisfies the ini-
tial constraint (4).

Intermediary Step: Find the closest probabil-
ity distribution x = (x1, . . . , xn) to the current
solution y = (y1, . . . , yn), by solving (5), sub-
ject to the constraints (2), (3), and (8). As the
solution obviously depends linearly on the level
z of the initial objective function of the normed
linear program, find the minimum nonnegative
value of z for which the corresponding solution
x = (x1, . . . , xn) also satisfies the nonnegativity
constraint (4).

Stop: When no improvement (i.e., decrease)
of z may be found.

Analitically, by solving (5), subject to the
constraints (2), (3), and (8), we get:

xj =

(
1 +

α

2
cj +

m∑
i=1

βi
2
aij +

γ

2

)
yj , (9)

for j = 1, . . . , n, where the Lagrange multipli-
ers α, β1, . . . , βm, γ are determined by introduc-
ing (9) into the constraints (2), (3), (8). The so-
lution will essentially depend on the level z ≥ 0,
whose minimum value is found such that the
nonnegativity constraint (4) is also satisfied.

3 Example
Let us take the following normal linear pro-
gram:

max
x

z = 3x1 + x2 (10)
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subject to:

2x1 − x2 ≤ 2 (11)
x1 + 2x2 ≤ 5 (12)

xj ≥ 0, (j = 1, 2) (13)

The normed form of this normal linear pro-
gram is (Winston [4], pp.597-599):

min
p
p11

subject to:

f2 = 3p1 + p2 − 2p3 − 5p4 + 3p11 = 0
f3 = 2p1 − p2 + p5 − 2p10 = 0
f4 = p1 + 2p2 + p6 − 5p10 + p11 = 0
f5 = 2p3 + p4 − p7 − 3p10 + p11 = 0
f6 = −p3 + 2p4 − p8 − p10 + p11 = 0

f7 =
9∑
i=1

pi − 80p10 + 71p11 = 0

f8 =
11∑
i=1

pi − 1 = 0

pi ≥ 0, (i = 1, . . . , 11)

where the initial decision variables are x1 =
81p1 and x2 = 81p2. Let us notice that the uni-
form probability distribution pi = 1/11, (i =
1, . . . , 11) is a feasible solution of the normed
linear program. Denote by f1 = p11 − z. Let
q = (q1, . . . , q11) be a given, initial probability
distribution. We want to solve the quadratic
program:

min
p

11∑
i=1

(pi − qi)2

qi

subject to:

fj = 0, (j = 1, . . . , 8). (14)

The powerful symbolic computing packages of
MATHEMATICA ([5]) may be used for imple-
menting the steps just discussed. The com-
mands for implementing one iteration towards
approximating the optimum solution are given
below. Inside the program, a1, . . . , a8 are
the corresponding Lagrange multipliers and
s1, . . . , s11 is the solution obtained at the end
of such an iteration.
For our example, using the version 2.1 of

MATHEMATICA, an arbitrary iteration con-
tains the following commands:
math
In[1]:= p1 = q1 ∗ (1 + 3a2 + 2a3 +a4 +a7 +a8)
In[2]:= p2 = q2 ∗ (1 + a2− a3 + 2a4 + a7 + a8)
In[3]:= p3 = q3 ∗ (1− 2a2 + 2a5−a6 +a7 +a8)
In[4]:= p4 = q4 ∗ (1− 5a2 +a5 + 2a6 +a7 +a8)
In[5]:= p5 = q5 ∗ (1 + a3 + a7 + a8)
In[6]:= p6 = q6 ∗ (1 + a4 + a7 + a8)
In[7]:= p7 = q7 ∗ (1− a5 + a7 + a8)
In[8]:= p8 = q8 ∗ (1− a6 + a7 + a8)
In[9]:= p9 = q9 ∗ (1 + a7 + a8)
In[10]:= p10 = q10 ∗ (1− 2a3− 5a4− 3a5−

a6− 80a7 + a8)
In[11]:= p11 = q11 ∗ (1 + a1 + 3a2 + a4 + a5+

a6 + 71a7 + a8)
In[12]:= f1 = p11− z
In[13]:= f2 = 3p1 + p2− 2p3− 5p4 + 3p11
In[14]:= f3 = 2p1− p2 + p5− 2p10
In[15]:= f4 = p1 + 2p2 + p6− 5p10 + p11
In[16]:= f5 = 2p3 + p4− p7− 3p10 + p11
In[17]:= f6 = −p3 + 2p4− p8− p10 + p11
In[18]:= f7 = p1+p2+p3+p4+p5+p6+p7+

p8 + p9− 80p10 + 71p11
In[19]:= f8 = p1+p2+p3+p4+p5+p6+p7+

p8 + p9 + p10 + p11− 1
In[20]:= Solve[{f1 == 0, f2 == 0, f3 == 0,

f4 == 0, f5 == 0, f6 == 0,
f7 == 0, f8 == 0},
{a1, a2, a3, a4, a5, a6, a7, a8}]

In[21]:= p1 = p1/.%20
In[22]:= Expand[N[%]]
In[23]:= p2 = p2/.%20
In[24]:= Expand[N[%]]
In[25]:= p3 = p3/.%20
In[26]:= Expand[N[%]]
In[27]:= p4 = p4/.%20
In[28]:= Expand[N[%]]
In[29]:= p5 = p5/.%20
In[30]:= Expand[N[%]]
In[31]:= p6 = p6/.%20
In[32]:= Expand[N[%]]
In[33]:= p7 = p7/.%20
In[34]:= Expand[N[%]]
In[35]:= p8 = p8/.%20
In[36]:= Expand[N[%]]
In[37]:= p9 = p9/.%20
In[38]:= Expand[N[%]]
In[39]:= p10 = p10/.%20
In[40]:= Expand[N[%]]
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In[41]:= p11 = p11/.%20
In[42]:= Expand[N[%]]

Out[21],. . . ,Out[42] give the expressions of
p1, . . . , p11 as linear functions of z, respectively.
Let b be the smallest numerical value such that
for z ≥ b all p1, . . . , p11 are nonnegative. We
continue our MATHEMATICA session with the
commands:
In[43]:= s1 = p1/.z− > b
In[44]:= s2 = p2/.z− > b
In[45]:= s3 = p3/.z− > b
In[46]:= s4 = p4/.z− > b
In[47]:= s5 = p5/.z− > b
In[48]:= s6 = p6/.z− > b
In[49]:= s7 = p7/.z− > b
In[50]:= s8 = p8/.z− > b
In[51]:= s9 = p9/.z− > b
In[52]:= s10 = p10/.z− > b
In[53]:= s11 = p11/.z− > b
Quit

After this iteration, the current solution is
s1, . . . , s11. For a new iteration we go back to
step In[1] by taking, successively, the current
solution s1, . . . , s11 to be the new intial start-
ing solution q1, . . . , q11. The last value of z
(ideally zero!) arrived at in the last iteration
performed gives the error of approximation of
the optimum solution. The first iteration starts
from the feasible solution q1 = 1/11, . . . , q11 =
1/11.

In our example, using the version 2.1 of
MATHEMATICA, taking q1 = 1/11, . . . , q11 =
1/11, at the initial step, we get:

a1 = −79.0446 + 869.49 z
a2 = 6.79012− 74.6914 z
a3 = −8.55556 + 94.111 z
a4 = −11.43 + 125.73 z
a5 = 7.3107− 80.4177 z
a6 = 9.07613− 99.9374 z
a7 = 0.641289− 7.05418 z
a8 = 7.18587− 79.0446 z

p1 = 0.0596708 + 0.343621 z
p2 = 0.119342− 0.312757 z
p3 = 0.0720165 + 0.207819 z

p4 = 0.0308642 + 0.660494 z
p5 = 0.0246914 + 0.728395 z
p6 = −0.236626 + 3.60288 z
p7 = 0.13786− 0.516461 z
p8 = −0.0226337 + 1.24897 z
p9 = 0.802469− 7.82716 z
p10 = 0.0123457 + 0.864198 z
p11 = z

All pi, (i = 1, . . . , 11), are nonnegative if z ≥
0.0656769. Taking this lower bound in the com-
mands:

si = pi/. z− > 0.0656769, (i = 1, . . . , 11),

we get the current solution:

s1 = 0.0822388, s2 = 0.0988006,
s3 = 0.0856654, s4 = 0.0742434,
s5 = 0.0725301, s6 = 5.18313× 10−7,

s7 = 0.103941, s8 = 0.0593948,
s9 = 0.288405, s10 = 0.0691035,

s11 = 0.0656769.

Taking these values of s1, . . . , s11 as the ref-
erence probability distribution q1, . . . , q11, we
repeat the steps mentioned above.

After a couple of more iterations we get z =
0.000109682 and the solution:

s1 = 0.0221340 s2 = 0.0199793,
s3 = 0.0124185, s4 = 0.0123747,
s5 = 0.0005923, s6 = 9.22242× 10−15,

s7 = 1.73967× 10−15, s8 = −3.81739× 10−17,

s9 = 0.919951, s10 = 0.0124405,
s11 = 0.000109682.

If at the end of this last iteration we take
z = 0 we get the solution:

s1 = 0.0222222 s2 = 0.0197531,
s3 = 0.0123457, s4 = 0.0123457,

s5 = 9.97295× 10−10, s6 = −3.75079× 10−16,

s7 = −5.54053× 10−10, s8 = 2.18306× 10−16,

s9 = 0.920982, s10 = 0.0123457,
s11 = 0.
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Let us mention that the exact optimum so-
lution is:

s1 = 0.0222222 s2 = 0.01975309,
s3 = 0.01234568, s4 = 0.01234568,

s5 = 0, s6 = 0,
s7 = 0, s8 = 0,

s9 = 0.92098767, s10 = 0.01234568,
s11 = 0,

corresponding to the optimum decision values
x1 = 81s1 = 9/5 = 1.8, x2 = 81s2 = 8/5 = 1.6
and the optimum dual values y1 = y2 = 1 of
the initial normal linear program.

The normed form of a linear program in-
volves more variables than the initial normal
linear program but it contains only equality
constraints, the feasible space contains only
probability distributions, the uniform distribu-
tion is feasible and may be always taken as the
starting feasibile solution, and the optimum ob-
jective value is always zero.

4 Approximation based on heuristic
simulation
In order to approximate the optimum solution
of a linear program we may adopt the maxi-
mum uncertainty strategy used by the general
Monte Carlo method in simulation. As the dis-
crete uniform distribution is the most uncer-
tain, or unbiased, probability distribution when
no restrictions are imposed, we cover as uni-
formly as possible the feasible space generated
by the constraints and select those solutions for
which the objective function is most improved.
The main advantage of the optimization based
on heuristic simulation is that it may be ap-
plied even when the objective functions and/or
the constraints are not necessarily linear. For
performig such a heuristic simulation the com-
puter package MINITAB on WINDOWS proves
to be efficient and user friendly.

Going back to the example (10)-(13) from
the previous Section, the MINITAB 11 on WIN-
DOWS session for approximating its optimum
solution is:

Using any text editor, for instance Notepad,
we create a text file on a diskette, named
bebe.mtb. Its content is:

random k1 c1;
uniform 0 2.5.
random k1 c2;
uniform 0 2.5.
let c3=3*c1+c2
let c4=2*c1-c2-2
let c5=c1+2*c2-5
code(-10000:0)1 (0:10000)0 c4 c5 c6 c7
let c8=c6*c7
copy c1 c2 c3 c9 c10 c11;
use c8=1.
let k2=max(c11)
code(k2:k2)1 (-10000:k2)0 (k2:10000)0 c11 c12
copy c9 c10 c13 c14;
use c12=1.
let k3=mean(c13)
let k4=mean(c14)
let c15(k5)=k2
let c16(k5)=k3
let c17(k5)=k4
let k5=k5+1

The diskette is put in drive a: and we access
MINITAB on WINDOWS, successively clicking
the mouse on: Session, Editor, and Enable
Command Language, followed by typing:

let k1=3000
let k5=1
noecho
execute ”a:bebe” 50
let k6=max(c15)
code(k6:k6)1 (-10000:k6)0 (k6:10000)0 c15 c18
copy c16 c17 c19 c20;
use c18=1.
print k6 c19 c20
stop

Generalities about MINITAB may be found
in [6]. In the above program: c1 and c2 con-
tain the values of the variables x1, and x2,
respectively, uniformly distributed in [0, 2.5],
therefore compatible with (11)-(13); c3 con-
tains the values of the objective function (10);
c4 and c5 contain the corresponding value of
the constraints (11) and (12), respectively; k1
is the number of solutions (x1, x2) randomly se-
lected in one run of the simulation; any solution
(x1, x2) randomly generated gets the value 1 in
c8 if it is feasible and the value 0 if it is not; c9,

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         575



c10, and c11 contain only those values of x1,
x2, and z that correspond to the feasible solu-
tions generated; k2 is the maximum objective
value for the feasible solutions generated; c11
and c12 contain those feasible values of x1 and
x2 for which the corresponding objective value
is maximum; k3 and k4 are the mean values of
the decision variables x1 and x2 for which the
corresponding objective value is maximum; k5
is a counter; the values of k2, k3, and k4 are
stored as the k5-th component of columns c15,
c16, and c17, respectively. The subprogram
bebe.mtb, randomly generating 3000 solutions
(x1, x2), is executed 50 times. The constant k6
contains the maximum of the maximum objec-
tive values obtained in those 50 runs, whereas
columns c15 and c16 contain the mean values of
the decision variables x1 and x2, respectively,
for which the corresponding objective value is
equal to k6. The approximation of the opti-
mum solution of the linear program (10)-(13)
obtained at the end of the 50 executions of the
subprogram bebe.mtb is given by k6, c19, and
c20. One such a MINITAB session gave the re-
sults: z∗ = 6.98442, in k6, x∗1 = 1.79387, in
c19, and x∗2 = 1.60282, in c20. The exact op-
timum solution of the linear program (10)-(13)
is: z∗ = 7, x∗1 = 1.8, and x∗2 = 1.6.

It is a sound strategy to shrink the domain
of possible values of the decision varaibles, by
changing the corresponding scales of values.
Even if, mathematically, the intervals [0, 1] and
[0, 2] have the same cardinal, it is obvious that
by using 1000 random numbers from each of
them, we cover better the first interval.

5 Conclusion
The well known Simplex Algorithm is looking
for the optimum solution of a linear program
by examining only the corner points of the fea-
sible polygonal space. N. Karmarkar has pro-
posed a new approach, moving towards the op-
timum point inside the feasible space, using op-
timization methods from multivariate calculus.
As every linear program with bounded feasi-
ble space may be put in a normed form, which
means a linear program with the optimum ob-
jective value equal to zero, with equality con-
straints, whose feasible solutions are probabil-
ity distributions, and for which the uniform

distribution is always feasible, an approach in-
volving probabilistic search techniques is obvi-
ously needed. This paper contains some results
about approximating the optimum solution of
linear programs with bounded feasible space
by using both the Monte Carlo Method from
heuristic simulation (back to common sense us-
ing a lot of random numbers), and the step
by step probabilistic search based on the min-
imization of Karl Pearson’s χ2-indicator from
statistical inference. A numerical example is
presented, solved by using the statistical com-
puter package MINITAB 11 on WINDOWS, for
the heuristic simulation, and the simbolic com-
puting package MATHEMATICA, version 2.1.
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