
Development Platform for Parallel Image Processing

RADU DOBRESCU, MATEI DOBRESCU, STEFAN MOCANU, SEBASTIAN TARALUNGA

Faculty of Control & Computers
POLITEHNICA University of Bucharest

Splaiul Independentei 313
ROMANIA

Abstract: - This paper describes a development distributed platform with client-server architecture that allows
developing parallel primary image processing on a cluster with variable number of workstations. The principles
of the software and hardware architecture of this platform are presented underlining the versatility and the
capacity of adaptation to a specific application. Experimental results show that for a realistic image processing
application performances are accurate and consequently the core of the architecture forms a powerful basis for
automatic parallelization of a wide range of image processing software.

Key-Words: - distributed platform, scheduling, parallel processing, image segmentation and rebuilding

1 Introduction

This paper describes a development distributed
platform with client-server architecture that allows
developing parallel primary image processing on a
cluster with variable number of workstations. In the
following this platform will be named D2P3
(Distributed Development Platform for Parallel
Processing). Parallel hardware architectures can be
programmed using two conceptual models of parallel
programming: data parallel and task parallel [1]. We
have used a data (image) parallel model, in which the
images are split and each part or sub-image is
processed by a different processor. Previous works
have proved that the application of parallelism in low
level (primary) image processing can be highly
beneficial. One of the most impressive syntheses was
realized by a group of researchers of the University
of Delft ([2], [3], [4]). They have conclude that,
instead the ideal solution would be a fully automatic
parallelizing compiler or at least the possibility to
design a parallel programming language aimed at
image processing specifically, a more practical
approach is to design a software library containing
parallel versions of operations commonly used in
image processing. Unfortunately, there are some
disadvantages in the creation of such a parallel
library [5]. First, the existence of many parallel
versions for different image processing procedures is
very laborious. Second, the extensions are very
difficult to make. Third, it will be necessary to
change the source code when introducing a new

platform. We feel that this solution requires too
much implementation effort, is not flexible enough,
and is impossible to maintain on the long term. For
these reasons, we take a different approach, creating
a software architecture containing a set of abstract
data types and associated pixel level operations
executing in data parallel fashion. The paper is
organized as follows: Section 2 discusses the
software architecture components. Section 3 presents
the platform model as distributed system and the
proposed solution for jobs scheduling. In Section 4
is described the operation mode for a typical
application. The performances obtained from
experiments are discussed in Section 5. Concluding
remarks are given in Section 6.

2 The software architecture

The first component of the software architecture
contain routines for image data partitioning, in order
to indicate which data parts should be processed by
each processing unit and routines for image data
distribution used to scatter, gather, broadcast and
redistribute data structures. The second component
of the software architecture contains a large set of
sequential operations typically used by image
processing researchers. Each operation that maps
onto the functionality as provided by a generic algo-
rithm is implemented by instantiating the generic
algorithm with the proper parameters, including the
function to be applied to the individual data

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 31

mailto:radud@isis.pub.ro

elements. In our current library the following set of
generic algorithms has been implemented: unary
pixel operation, in which an unary function is
applied to each pixel in a given image (example:
negation); binary pixel operation, in which a binary
function is applied to each pixel in a given image
(example: threshold); geometric operation, in which
a given image's domain is transformed (example:
scaling); neighborhood operation, in which several
pixels in the neighborhood of each pixel are
combined (example: median); filtering by
convolution (example: Gauss).

Following the solution proposed Seinstra and
Koelma [6] for each generic algorithm we have
defined a parallelizable pattern. Each pattern
constitutes the maximum amount of work in a
sequential generic algorithm that can be performed
both sequentially and in parallel (without having to
communicate to obtain non-local data).

The last component of the software architecture is
the scheduling component that is applied to find an
optimal solution for a given application. The requests
for scheduling results are performed to determine
which parallelization strategy is required. The aim of
scheduling is to provide specified shares of the total
system capacity to groups of jobs.

3 Platform model and scheduling

principles

Our system model consists of P processors.
Processor p has capacity cp, with cp > 0, p = 1, . . .,
P. The capacity of a processor is defined as its speed
relative to a reference processor with unit capacity.
We assume for the general case that c1 ≤ c2 ≤ · · · cP..
The total capacity C of the system is defined as

. A system is called homogeneous when c∑
=

=
P

p
pcC

1

1

= c2 · · · = cP . The platform is conceived as a
distributed system.

Fig.1. The model of the distributed platform

Each machine is equipped with a single processor.
The main difference with multiprocessor systems is
that in a distributed system, information about the
system state is spread across the different processors.
In many cases, migrating a job from one processor to
another is very costly in terms of network bandwidth
and service delay ([7], [8]), and that the reason that
we have considered for the beginning only the case
of data parallelism for a homogenous system. The
global scheduling policy decides to which processor
an arriving job must be sent, and when to migrate
jobs. At each processor, the local scheduling policy
decides when the processor serves which of the jobs
present in its queue.

Jobs arrive at the system according to one or more
interarrival-time processes. These processes
determine the time between the arrivals of two
consecutive jobs. The arrival time of job j is denoted
by Aj. Once a job j is completed, it leaves the system
at its departure time Dj. The response time Rj of job j
is defined as Rj = Dj – Aj. The service time Sj of job j
is its response time on a unit-capacity processor
serving no other jobs; by definition, the response
time of a job with service time s on a processor with
capacity c’ is s/c’. We define the job set J(t) at time t
as the set of jobs present in the system at time t:

For each job j J(t), we define the remaining work

at time t as the time it would take to serve the
job to completion on a unit-capacity processor. The
service rate of job j at time t (Aj ≤ t < Dj) is
defined as:

The obtained share of job j at time t (Aj ≤ t <
Dj) is defined as :

In words, is the fraction of the total system
capacity used to serve job j, but only if we assume
that is always a piecewise-linear, continuous
function of t.
Let consider as an example a system with P = 3, c1 =
2 şi c2 = c3 = 1. For simplicity, we assume that there
is no job migration and that jobs are only served by
processor 1, or wait in its queue. At time t = 0, job 1
with service time S1 = 4 enters the system, job 0 is
already present, . There are no other
jobs present in the system, nor do any other jobs
arrive. We consider the First-Come First-Served

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 32

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Koelma:Dennis.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Koelma:Dennis.html

(FCFS) policy [9]. Fig.2. presents and
.

Fig. 2 The remaining work , the service rate

 and the obtained share of job for the
FCFS policy.

4 A case study

The main application implemented allows processing
an image in 24bpp format by distributing the image
blocks resulted after the segmentation realized on the
Server to the associated Client applications. Fig.4
presents the ground architecture that separates the
Server zone and the workstations (Client).

Fig. 4. The architecture of the 2D3P system

The Operation system is Windows XP and the
network protocol is TCP/UDP. The current
implementation contains a set of 20 algorithms, but
an extension is very easy to made [10].

4.1 The description of the main application

The Server allows selecting the image to be
processed together with one of the implemented
algorithms with the specified parameters. Then the
available free Client workstation in the local

(Intranet) network are listed in order to be used to the
given image processing [11]. For simplicity on the
Server station was implemented a progressive
segmentation method that starts with a first segment,
then proceeds to areas segmentation and finally to
the whole image segmentation in bitmap format.
When the segmentation process is finished, the
Server initiates a Task Manager class that supervises
the processing of the resulted image blocks together
with the Connection Manager class. When all the
Image blocks are processed, the Task Manager
transfers the control to the Server station in order to
initiate the restoration of the global image. The
modules of the main routine are listed in table 1.

Table 1. Description of the Application Modules

4.2 The description of the communication
procedures

The main application, that consist in still image
segmentation, clustering, data block distribution,
image processing on individual hosts and then
processed blocks transfer and grouping in order to
obtain a whole processed image was conceived to be
tested first on a simulation model [12]. The transfer
of data was simulated on RTD channels [13]. A

Module Description

Server.exe Allows the selection and the launch
of the processing algorithms on the
available Client stations in LAN.

Client.exe Executes at demand the processing
of an image block by applying the
algorithm solicited by the Server.

Common.dll The common library containing the
code for the TCP communication,
the registration of the events and the
planning.

Algorithms.dll The library containing the acquired
or implemented algorithms.

Alginterface.dll Associated library used in the Server
application to introduce the specified
parameters of the algorithms.

Geometry.dll Supported algorithms: Flip •
Rotate • Mirror

Neighbor.dll Supported algorithms: EdgeSobel •
GaussianBlur • MeanRemoval •
Sharpen •Smooth • Shapen • Median

Pixel.dll Supported algorithms: Brightness •
Color • Contrast • GrayScale •
Invert(Negative) • Emboss • Blur •
Noise

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 33

number of experiments have been performed to test
both functional and performance aspects of the
service. All tests were run on a experimental
platform with a cluster of until 8 Pentium2 PCs
connected via a dedicated 10 Mbps Ethernet hub, but
the intention is to repeat the experiments in a
wireless network. In this aim some aspects
concerning the effects of temporal and spatial
heterogeneity of channel bandwidth [14] were taken
into account. Finally, the real test were run in a
typical cluster with Client-Server architecture. The
Server maintains a permanent TCP connection with
each of the Client stations. An accidental interruption
of the connection is signalled by a data packet of
zero length. In the case of the Server, Connection
Manager is implied in the treatment of errors by
releasing the system resources. In the case of a Client
the detection of a error produce in addition the
change of the message of the Status Bar in
„Disconnected”. The reception is asynchronous
realized in a circular buffer of 4096 bytes. After the
Server sends the processing algorithm, the
configuration parameters, and the dimension of the
next image block the Client can reserve the
necessary memory space. When the processing
operation is finished, the Client station sends the
result to the server in a similar manner. The Server
sends periodically broadcast packets in order to
maintain the synchronization and to ensure the
possibility of a dynamic connection or disconnection
of a Client station.

5 Implementation, tests and results

The Server interface has many dialogue windows,
that allow to display images at different stages of
processing (see the screenshot in fig. 6).

Fig. 6. A screenshot of the main Server page

So, first one can see the original image and then the
image after segmentation with a mark for each image
block. After the end of an image block the resulting
block is superimposed on the old position. This
process continues until all the result image blocks are
imbricate in the right position and the whole result
image is displayed.

At this stage of development the Application offers a
limited set of Processing functions. This list contains
functions with a different degree of complexity, from
the simplest unary operations to the most
complicated convolution operations. Our aim was to
determine when the parallel processing becomes
efficient. For the moment, the functions included in
Applications are: Flip, Mirror, Negative, GrayScale,
Emboss k3, Blur k3, Gaussian k3, Gaussian k5,
Soften k3, Shapen k3, Edge k3, Median k7 and
Noise. The Symbol k followed by a number indicates
the size of the convolution kernel. In the right side of
the main Server window we have the box named
Segments size which contains the information
necessary for the image segmentation procedure.

The Client interface (represented by the screenshot
in fig. 7) is structured in a similar manner as the
Server interface. The right side represents the control
zone, the left side is the graphical zone where is
displayed the image block after processing. By
acting on the button Connect Client try to connect at
the specified IP and port. By acting on the button
Close the Client is disconnected. In the left side there
are placed two boxes.

Fig. 7. A screenshot of a Client page, during
processing

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 34

When the user ask to process many images, the
Server creates a queue of tasks (a pool), and the
Client verifies permanently this queue in order to see
if there is something to process. At this moment the
application can run in two modes. In the first mode,
the user selects the image to process, the
segmentation procedure and the processing
algorithm [15]. In the second mode, the Server
makes an optimal distribution of the load for each
connected Client station in the LAN [16]. The
number of block images is the same as the number of
working Client stations. After a processing operation
start, the Server can dynamically adjust the load by
using two parameters: the processing time
communicated by a Client station after running a test
file and the transmission times that result from the
difference between the total processing time and the
processing time for an image block. Other two
benchmarks are considered too: the ratio between the
size of a test file and the size of the image to be
processed, and the ratio between the necessary time
to process the same image block with the test
function and respectively with the chosen processing
function.

All the tests were made only with Client stations
having the same properties and the same set of
specified processing functions. This option offers
the possibility to determine when a parallel image
processing becomes efficient. That depends
essentially from the size (and consequently on the
number) of the image blocks obtained by
segmentation. Actually, the size of an image block
allotted to a Client station is determinate by four
parameters: 1) the transmission and receiving time of
a block to and from the Client station, tsend.; 2) the
necessary time to process this image block on the
Client station tproc; 3) the ratio between the size of the
image to be processed and the size of the test image;
4) the ratio between the processing time of a Client
station for the test function and for the function to
be used in the processing operation.

Table 2 presents the processing times for different
test functions applied on an image of 2300x1600
pixels at 24bpp and the ratio between the
transmission time and the processing time for each
function and Table III contains the values for the
effective processing time (including the transmission
and receiving times and the time for the
reconstruction of the global image) obtained for the
same functions in the situation when a different
number of Client stations have participated to the
processing, respectively 2, 4, 6 or 8 Client stations.

Table 2. Indicators for the Test Functions
Function / Code tproc Ratio

Median k7 / Mk7 23.141 0.300
Gaussian k5 / Gk5 4.765 0.161
Gaussian k3 / Gk3 1.656 0.071
Blur k3 / Bk3 1.672 0.072
Emboss k3 / Ek3 1.422 0.061
Noise/Noi 0.781 0.033

Negative/Neg 0.078 0.003

Table 3. Indicators for the Effective Processing
Functions

tproc_total - n Client processors Code tproc -
n=1 n=2 n=4 n=6 n=8

Mk7 23.141 14.233 9.670 8.444 8.016
G k5 4.765 2.167 1.478 1.182 1.166

Gk3 1.656 1.288 0.954 0.766 0.742

Bk3 1.672 1.172 1.022 0.804 0.798

Ek3 1.422 1.065 0.920 0.756 0.756

Noi 0.781 0.533 0.496 0.322 0.346

Neg 0.078 0.065 0.078 0.086 0.098

The results confirm that the proposed solution
implements an efficient algorithm for parallel color
and grey level image processing using convolution
functions. The experiments show that a border
overload is considerable less than the overload
resulted from the transmission of all the pixels of the
image, especially when the size of the kernel is
significantly less than the size of the image. Only in
this situation (typical for convolution processes) the
segmentation method is not an essential component
in establishing the total processing time and the
performances of the distributed processing. Another
condition to obtain good results is that the Intranet
works at optimal parameters (a collision rate less
than 10% and a loading rate less than 35%). Using to
many processors units can be counterproductive.
From Table 3 one can observe that the processing
time decrease almost linear with the number of
processor units, when the reference processing time
(with a single processor) is greater than 1 second,
while when this time is less than 1 second, a number
of processors units greater than 6 leads to the
limitation or ever to the diminution of the
performances.

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 35

6 Conclusions and future work

In this paper we have described a software
architecture that allows an image processing re-
searcher to develop parallel applications in a
transparent manner, on a development platform
implemented as a collaborative distributed system. In
the same time this architecture offers the possibility
to test several modes for tasks management and
scheduling and to try an optimization of the load
balancing between the workstations. Experiments
show that the proposed procedures are highly
accurate for parallel processing using convolution
functions. In the near future we will focus our
attention on the improvement of the scheduling
component, by using workstations with different
processing capacities and also other service policy
for the queue of jobs, for example Processor Sharing
[17]. We will continue implementing example
programs to investigate the implication of
parallelization of typical applications in the area of
real-time image processing, trying to improve the
performances by supporting the execution of a
sequence of algorithms on the same block,
dynamical reconstruction of the processed image and
extension of the functions library.

References:

[1] C. Nicolescu and P. Jonker, A data and task

parallel image processing environment. Parallel
Computing, 28(7-8), 2002, pp.945-965

[2] D. Hammerstrom and D. Lulich. Image Pro-
cessing Using One-Dimensional Processor
Arrays. Proc. of IEEE, 84(7):1005-18 (1996)

[3] F.J. Seinstra, D. Koelma and J.M. Geusebroek.
A Software Architecture for User Transparent
Parallel Image Processing, Parallel Computing,
28 (7-8), 2002, pp. 967-993

[4] C. Soviany, Embedding Data and Task
Parallelism in Image Processing Applications,
PhD Thesis, Technische Univ. Delft, 2003

[5] T. Bräunl, Parallel Image Processing, Springer-
Verlag, Heidelberg, 2001

[6] F. Seinstra and D. Koelma, Lazy Parallelization:
A Finite State Machine Based Optimization
Approach for Data Parallel Image Processing
Applications, Proceedings of the 17th Int.
Parallel & Distributed Processing Symposium
IPDPS 2003, p.229-236

[7] G.Agosta, S. Crespi Reghizzi, G. Falauto and M.
Sykora, JIST: Just-in-Time Scheduling
Translation for Parallel Processors, Third Int.

Symposium on Parallel and Distributed
Computing - ISPDC04, 2004, pp. 122-132

[8] S. Papavassiliou, A. Puliafito, O. Tomarchio,
and J. Ye, “Mobile Agent-Based Approach for
Efficient Network Management and Resource
Allocation: Framework and Applications”, IEEE
J. Selected Areas in Comm., vol. 20, no. 4, 2002,
pp. 858-872

[9] I. Stoica, H. Abdel-Wahab and K. Jeffay. On the
Duality between Resource Reservation and
Proportional Share Resource Allocation. In Proc.
Multimedia Computing and Networking, 1997
pp. 207–214

[10]M. Dobrescu, A Client-Server Image Transfer
Application for a Distributed Processing System,
U.P.B. Scientific Bulletin, Series C- Electrical
Engineering, Vol. 65, No. 1-4, 2003, pp. 77- 85

[11]X. Li, B. Veeravalli, and C.C. Ko, “Distributed
Image Processing in a Network of
Workstations", International Journal of
Computers and Applications, ACTA Press, Vol.
25 (2), 2003, pp. 136-145

[12]M. Dobrescu and St. Mocanu - Resource
management for real time parallel processing in
a distributed system, WSEAS Transactions on
Computers, Issue 3, vol.2, 2004, pp.732-737

[13]M. Hiltunen, R. Schlichting, X. Han, M.
Cardozo and R. Das, Real-Time Dependable
Channels: Customizing QoS Attributes for
Distributed Systems, IEEE Transactions On
Parallel And Distributed Systems, 10, no. 6,
1999, pp.600-612

[14]Jun Huang and S.-Y. Lee, Effects of Temporal
and Spatial Heterogeneity of Channel Bandwidth
on Performance of Individual Messages in a
Heterogeneous Communication Networks, 2004
International Conference on Parallel
Processsing, 2004, pp.126-133

[15]K. Shen, H. Tang, T. Yang and L. Chu,
Integrated Resource Management for Cluster-
based Internet Services. Proceedings of Fifth
USENIX Symposium on Operating Systems
Design and Implementation (OSDI '02), 2002,
pp 225-238

[16]C. Denis, J.-P. Boufflet, P.Breitkopf, A Load
Balancing Method for a Parallel Application
Based on a Domain Decomposition, Proceedings
of the 19th IEEE Int.l Parallel and Distributed
Processing Symposium (IPDPS’05), 2005

[17]M. Dobrescu. Distributed Image Processing
Techniques for Multimedia Applications, Ph.D.
Thesis, Politehnica Univ. of Bucharest, 2005

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 36

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/j/Jonker:Pieter.html
http://www.informatik.uni-trier.de/~ley/db/journals/pc/pc28.html#NicolescuJ02
http://www.informatik.uni-trier.de/~ley/db/journals/pc/pc28.html#NicolescuJ02
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Koelma:Dennis.html
http://www.informatik.uni-trier.de/~ley/db/conf/ipps/ipdps2003.html#SeinstraK03
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Giovanni%20Agosta
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Stefano%20Crespi%20Reghizzi
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Gerlando%20Falauto
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Martino%20Sykora
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Martino%20Sykora
http://csdl.computer.org/dl/proceedings/ispdc/2004/2210/00/22100122.pdf
http://csdl.computer.org/dl/proceedings/ispdc/2004/2210/00/22100122.pdf
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ispdc/&toc=comp/proceedings/ispdc/2004/2210/00/2210toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ispdc/&toc=comp/proceedings/ispdc/2004/2210/00/2210toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ispdc/&toc=comp/proceedings/ispdc/2004/2210/00/2210toc.xml

