
Internet technologies and the grid paradigm: designing a custom
environment for web service-based applications

SERENA PASTORE

National Institute of Astrophysics (INAF)
Astronomical Observatory of Padova

Vicolo Osservatorio 5 – 35122 - PADOVA
ITALY

Abstract: - Methodological and computational difficulties introduced by the expanding knowledge base of
science domains reflected in the growing volumes of data that must be stored, retrieved and analyzed can be
overcome by applying distributed technologies from a grid, web services and internet technologies in general.
Applications are developed as services-based paradigms, making use of for example Java platforms that
support interoperable data handling, scalability, load balancing and other capabilities. Moreover they should
be deployed in an embedded secure environment that may provide all necessary functionalities like
description, processing, discovery, composition etc. In the context of specific grid infrastructures and
astrophysical applications, the paper starts with issues that have arisen in deploying grid applications, then
describes the design and custom solutions proposed in the areas of discovery, composition and security. The
introduction of specific technology components implementing standard specifications can enhance grid
computing infrastructure providing a method for an integrated solution.

Key-Words: - web services specifications, grid technologies, service discovery, composition, security

1 Introduction
Methodological and computational difficulties
introduced by the expanding knowledge base of
science domains reflected in growing volumes of
distributed data which is routed to different data
centers to be stored, retrieved and analyzed, can be
overcome by applying technologies from a grid [1],
web services and from internet technologies in
general [2]. Distributed systems have implemented a
remote method invocation by using frameworks [3]
that are able to provide a remote object that works
like a service comprising a set of functions. The
service concept exists in web and grid services as a
set of XML-based specifications which allow it to
be exposed, discovered and securely accessed. This
approach provides scale, scope ubiquity and ease of
deployment and utilization. Pursuing performance
improvement of computer-intensive, long-running
applications, Web Services technologies play a
critical role in two areas of high performance
computing and distributed parallel computing:
communications/deployment (application
adaptation) and classifications/discovery services of
resources (infrastructure layer). The deployment and
execution of services requires an infrastructure that
provides all necessary functionalities in terms of
description, discovery and management in a secure
way. Grid architecture forms a practical basis for

building systems that are robust, maintainable and
secure. In the specific scientific context of a research
project whose objectives were to study the porting
of astrophysical applications in a specific grid
infrastructure developed according to the
specifications introduced by the community in order
to provide uniform access and use of data [4], grid
and web services technologies have been studied
and experienced [5]. Each interaction within the
scenario has raised a set of problems that require
customization of the grid framework by including
components that provide web service-based
functionalities. Evaluating development, deployment
and the tuning of service-based applications within
the grid environment, it is argued that the general
infrastructure must support robust, reliable and
resilient distributed messaging within distributed
systems. A message encapsulates information
pertaining to transactions, data interchange and the
searching and discovery of resources as well policy
information. Developing grid applications with a
web services computing paradigm [6] solves
interoperability issues, but introduces new problems
regarding their use in the discovery, composition
and security areas of the environment. Production
grid architecture, based on middleware developed in
European grid projects (LCG-2 software
(http://lcg.web.cern.ch/LCG) and gLite toolkit

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 693

(http://glite.web.cern.ch)), is only partially based on
grid services and web services specifications that
had been initially developed for fast job executions
within world-wide nodes. Developing and deploying
applications in this context has required an approach
that tries to integrate with the current middleware
specific modules. The designed solution required the
implementation in the grid of web service
specifications like UDDI (http://www.uddi.org),
BPEL (Business Process Execution Language) and
WS-Security that are all developing as OASIS
(http://www.oasis-open.org) standards. The paper
describes the design of the components introduced
in order to provide discovery facilities and to enable
automation between entities involved together with
security constraints related to the use of such
technology. While discovery and security solutions
have led to some results, the composition area is still
in the study phase.

2 The grid paradigm, web service
technologies and possible
implementations in a scientific context
Web services are gaining acceptance as the
predominant technology used to interconnect
disparate applications; grid computing is dealing
with interoperability problems in distributed
environments. A grid provides infrastructure for
parallel distributed computing: the Globus project
(http://www.globus.org) and its proposed
architecture specifications describe how web
services can facilitate the creation, life-cycle
management and security requirements. Mainly it
addresses the infrastructure and resources associated
with the grid and not the applications that run on it.
The most common approach to enabling an
application for a grid environment is to decompose
it into smaller, independent subtasks (job chunks)
and submit the job to the grid (schedule and deploy).
This paradigm provides a good solution for batch
cycle applications but it lacks the capability for
more complex applications. Web services could be
seen as a self-contained and self-describing web
application that can be published, located and
invoked across the web with the goal of performing
functions. When deployed, other applications or
services can discover and invoke them in the
concept of reusability and in composing them into
components. Moreover their modularity, exposition
outside of the particular paradigm of system, a
machine-readable format description and the
implementation-independency of the interface are

features that make them a good choice for
distributed programming in an Internet environment.
The motivating scenario examines the ability to
develop applications that provide astronomical
facilities as services. They have to be sharable in a
grid as a means of searching for information in
several data sources, retrieving results in a specific
format and processing them through web-based
tools. The astronomical search process comprises,
for example, different atomic operations that have a
return list of the available data repositories, a
detailed description of a specific repository and the
different kinds of searches available on those data.
For the sake of simplicity, all these operations can
be viewed as a single web service. The interactions
can be synchronous, like the looking-up procedure
and asynchronous, such as the query submission to
the system which will compute the query. The
operations may be designed so as to be executed
serially or in parallel and should be discovered and
secured so that only authenticated and authorized
users can access them. The solution makes use of
the current Java platform, since applications are
developed by using the Java programming language.
The Java platform, even though it is only one of the
possible implementations, provides adequate support
for XML data handling, scalability, load balancing
and other capabilities concerned with, for example,
security, distributed transactions and reliable
messaging.

2.1 A WSDL-based service and its container
Each service deployed by the grid is described by a
Web Service Description Language (WSDL)
(http://www.w3c.org) document (Fig.1) that allows
a remote interface to be exposed. The document
describes the service as a collection of
communications endpoints or ports; it includes
abstract and technical information. All the
interactions are supported by messages transported
within the SOAP protocol and the data being
exchanged are specified as part of the message
included in the SOAP document. Every type of
action allowed at an endpoint is considered an
operation. Collections of operations possible on an
endpoint are grouped together into port types.
Messages, operations and port-types are all abstract
definitions. Furthermore a port is defined by being
associated with a network address with a reusable
binding that is protocol and data format specified for
a particular port type. The collections of ports define
a service. Web Services are usually deployed in a
web application container that is transformed from a

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 694

container for presentation and tightly coupled logic
to an infrastructure that equally supports
asynchronous messages and flow coordination.

Fig. 1. WSDL document that represents the
QueryServiceBase service. It provides queries to a
database that supports the select operation.

For Java technologies, the Tomcat
(http://tomcat.apache.org) /Axis
(http://ws.apache.org/axis) framework by Apache
provides a container/engine implementation and
allows applications to be exposed as web services
through SOAP/HTTP interface. If these services are
shared in a grid environment, the framework must
be present in a grid node exporting services to the
whole environment.

2.2 The logic infrastructure
Production grid [7] is structured as a collection of
logical machines implementing grid functionalities.
The infrastructure is composed of several sites
belonging to different organizations (the Virtual
Organizations or VOs [1]). Each site belongs to an
institute that shares resources, aims to be part of the
grid, and which should implement different features
to allow a constant connection to the network. All
nodes in a grid environment are centrally managed
and monitored to follow the dynamic changes of the
infrastructure. The main logic roles in sharing
resources are played by the so-called Computing
Element (CE) and Storage Element (SE) nodes
which essentially provide processing and storing
facilities. Moreover such nodes may host an
application container and engine. Sharing a service-
based application in such a grid node requires that
the resource be catalogued as part of the main
infrastructure. This approach indicates the
description of the resource following a schema. In
fact, grid resources need to be indexed,

automatically discovered and processed by the main
grid components. In a grid system the execution of
an application has to assure, in a secure and easy
way, the localization of the best component as a
means of using the best distributed resources
available in the moment it is required by the process.
The log of all the processes guarantees that it is
simple to know the state of the execution. In our
context, the grid procedure means the use of a
discovery engine that is LDAP-based, the absence of
a process orchestration engine and the application of
security strategies that partially address web services
issues offering transport basic security capabilities,
but not all end-to-end requirements. Since we have
found as these tools are not sufficiently adequate to
describe, find and share services-based grid
applications, we have chosen to integrate in this
environment specific web services components.

3 Web services components for the
grid infrastructure
To overcome such problems two complementary
approaches have been proposed: the development of
a new grid middleware component [8] that has led to
a new logical element of the infrastructure and an
integrated design in the current middleware of
modules implementing web services specifications
for the target objectives.

Fig.2. A comparison between the web services layers,
specifications and proposed implementations

In the second approach, we have specifically
analyzed components addressing the different areas
with the following solutions:
- a discovery engine based on the UDDI
specifications with the design of its enhancement
with semantic technologies to introduce automation;
- a web service composition system based on a
BPEL engine hosted in a grid machine;
- a security strategy based on the handlers’ method
to provide a security chain to web services.
While Fig.2 represents the web service architecture
layers, specifications and possible implementation,
Fig.3 shows the components deployed in specific
nodes of the grid infrastructure that are strictly
correlated each other.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 695

Fig. 3. Integration of web services components in the
generic grid infrastructure

3.1 The discovery system
The grid discovery problem has been initially solved
by using an LDAP-based approach implementing a
hierarchy of index systems like the Monitor and
Discovery System (MDS2) of the Globus Toolkit
(http://www.globus.org/toolkit). According to this
approach all grid resources are described in a
specific schema and published in an LDAP
directory. LDAP servers are present in different
levels of the grid infrastructure: host, site and global
level. The root LDAP is constantly updated with
information about all sites composing the grid. This
method has been revealed to be insufficiently
expressive for describing a web services application
and the information embedded in a WSDL
document. In an ideal world, services would be able
to advertise themselves and the discovery system
should provide correct information. We have
proposed the design and integration of an UDDI
registry to better address web services
functionalities in the grid. Among the different
implementations of UDDI specification, the testing
prototype [9] makes use of the Apache jUDDI
solution (http://ws.apache.org/juddi) that acts as a
repository of WSDL services. UDDI allows for a
better description and categorization of services and
entities. In such a perspective each web service
representing one or more operations (i.e. a selection
of the specific query) has a valid WSDL document
that describes its interfaces. Even if targeted to a
business environment, we have decided to define
our VO as an entity that offers several services
exporting a WSDL interface. UDDI categorization is
mainly based on geographic location or on an
industry classification system (i.e. the North
American industry classification system or NAICS)
of the business organizations, but its data structure
allows it to handle other features of a WSDL-based
service. tModels, for example, are an abstract
concept that may represent standards, specifications
and documents. Other structures that describe the
organization and the services it offers are

businessEntity, businessService and
bindingTemplate; they can have relationships with
tModel but with a different meaning. While
businessService is a logical container of service, the
bindingTemplate structure contains the accessPoint
of the service as well as references to the tModels.
The direct mapping between the WSDL structure
and the UDDI data model introduced by OASIS [10]
may enable the automatic registration of WSDL
definitions in UDDI and UDDI queries based on
WSDL artifacts and metadata (Fig. 4). tModels are
used to represent technical specifications such as
service types, bindings and protocols or to
implement category systems that are used to
categorize technical specifications and services.
When a specification is registered in the UDDI
registry as a tModel, it is assigned a unique key
(tModelKey). This key is used to reference the
tModel. Moreover, tModel contains an
overviewURL which provides the address of the
specification itself (i.e. a WSDL document) and
additional metadata to address the identifier (in the
identifierBag construct) or category systems (in the
categoryBag construct). Each of these metadata
contains a set of keyedReference elements that
specifies the tModelKey of the category system and
a name/value (keyName and KeyValue) pair that
specifies the metadata. For example, we may use
these data values (keyname uddi-org:types and
keyvalue wsdlSpec to specify a WSDL namespace)
as selection criteria when searching UDDI.

Fig.4. Mappings between WSDL structure and UDDI
data and an example of tModel structure

Queries for discovery may, for example, once given
the namespace or local name of a wsdl:porType or
wsdl:binding find the tModel that represents them.
Or, it may be given the name of a wsdl:service to
find the businessService that represents the service
or the tModel representing a portType; or a binding
may find all tModels or bindingTemplates that
represent that model or binding. The tModel may be
classified as being of wsdlSpec type, referring to
those services whose description is based on the

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 696

WSDL document describing the interface and the
overviewURL attribute contains a URL pointing to
it. This classification is based on a finite set of
values (key/value pair) and the method efficiently
describes all applications. UDDI provides such a
technical infrastructure for publishing several details
of web services on the Internet that could overcome
the limit of using the grid LDAP solution for this
kind of resource. However it still requires human
interaction since it implements a poor search model
that is essentially key-based. To introduce
automation capabilities, it is necessary to approach
semantic web technologies; some researches has
been done in this field [11]. Semantic allows a well-
defined meaning to information to be given through
the introduction of an ontology that is an explicit
formal specification of how to represent the
information with a language. A semantic annotation
is the description of entities using semantic web
standards. In the web services area, research aimed
at annotating the WSDL with specific languages that
reference URI in the ontology or by an external
description. Once a web service is semantically
annotated, this information can be advertised in
some semantically-augmented service registry and
that information can be used for service discovery.
Furthermore different attempts to bring semantics to
UDDI focus on the process of a semantic search
based on an internal or external matchmaker engine
[11]. The current work is trying to implement such
techniques in the UDDI registry.

3.2 Addressing the composition goal
With the need to interconnect services, the key idea
is to implement a workflow to connect simple, well-
defined functionalities. A workflow, or process, is a
set of activities in a graph that has one or more
beginnings and one or more ends and gives a general
description of everything that can and should occur.
It could include as participants human participants
as well as other pieces of software. The software
program that executes a workflow is the engine that
uses the general description given by the workflow
to coordinate all tasks. This description, which helps
the engine to understand and execute the workflow
later on, is made by using a process description
language (or grammar). Most recent process
description languages are XML-based and we have
decided on a tradeoff between cost, quality and
requirements, to refer to the Web Services BPEL
(WS-BPEL) and on a BPEL engine to prepare the
environment for workflow execution. One possible
implementation is ActiveBPEL
(http://www.activebpel.org), an open source solution

for the BPEL engine written in Java and therefore
compliant within the analyzed environment. The
engine provides a robust runtime environment that is
capable of executing process definitions created to
the BPEL 1.1 specification. It reads BPEL process
definitions but also other inputs such as WSDL files
and creates representations of BPEL processes. In
this way, all the information with which it needs to
communicate (i.e. port, name, operations, service
and messages related to the service), are referenced
in the process directly by its URL or by copying the
WSDL into the project. As of now, this design is in
the feasibility phase.

3.3 A security perspective
Security issues play an important role in both web
services and grid environments since they address
systems placed in a public network over TCP/IP
connections. New concerns arise as a result of
distributed computing and transacting business over
the web. There are five primary areas to consider:
authentication, that is the act of assuring an entity is
who its says it is by providing some form of proof;
authorization, the process of determining what an
authenticated user is entitled to do; confidentiality, a
means of guaranteeing that only the intended
recipient can view the information being exchanged;
integrity, a means of ensuring that information
arrives at its intended destination unaltered; and no
repudiation, the ability to trace or log the fact that a
document was sent and received. The Grid Security
Infrastructure [12], implemented in every grid
middleware, provides open standard Public Key
Infrastructure- based mechanisms to address
authentication requirements and several
authorization mechanisms to secure access for sites,
hosts and resources in a VO structure. In the
reference infrastructure users, hosts and services are
authenticated by X.509 credentials (certificate and
key), but users are authorized by the VOMS (VO
Membership System) system [13] that is an account
repository which helps to defines roles and attributes
by embedding them in special X.509 based format
(VOMS credential). The solution proposed to secure
our grid applications [14] addresses the security of
both the container/engine and the application,
essentially by using a message handler technique as
the ability to intercept the SOAP messages and pass
them through a series of processing steps prior to
actually delivering them to the service
implementation code. This method can be
configured and applied to either individual services
or to all services deployed on the server. The
process (Fig. 5) makes use of an authentication

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 697

module to secure the Java container and an
authorization framework. This consists of an handler
being put in front of each web service to be
controlled and a policy engine repository that
implements an XML policy to allow or deny access
to the application according to VO roles and
attributes. Moreover, the flexibility of the handler
technique allows for the implementation of a
security chain to protect web service and adding, for
examples, WS-Security elements.

Fig.5. Security chain of the web services application
access in the grid environment.

A study is going to test the possibility of adding WS
security specifications (XML encryption and digital
signature) by using the Apache WSS4J
(http://ws.apache.org/wss4j) implementation of the
standard. This software provides a handler with the
ability to add a WS-security layer to the web
services with minimal impact to the service and
client implementation itself.

4 Conclusion
While grid standards and implementation are
evolving towards using web services architecture to
provide basic functionalities, our work is focused on
offering a specific environment where grid
applications developed according to a web service
paradigm (and mainly the Java programming
language) could be deployed and easily used. This
has required the implementation and customization
of specific components that address web services
assets while maintaining a compatibility with the
primarily grid infrastructure. All the components
that are added to the current grid infrastructure can
be viewed as a method for an integration solution.
Thanks to the Java platform, the runtime
environment providing discovery and composition
solutions (UDDI registry and BPEL engine) allows
for separate modules. This structure allows for
scalability and the possibility of separately
managing and implementing such components in a
grid machine that hosts an application server and a
SOAP engine. A security solution employing the
message handler technique may hide
implementation specifics and could provide future

capabilities like adding SAML assertion, providing
XML encryption capabilities and so forth.

References:
[1] Maozhen Li, mark Baker, The Grid: Core

Technologies, John Wiley and Sons. , 2005
[2] Kennet P. Birman, Reliable Distributed Systems:

Technologies, Web Services and Applications,
Springer, 2005

[3] Andrew S. Tanenbaum, Maarten van Steen,
Distributed Systems: Principles and Paradigms,
Prentice Hall, 1st edition 2002.

[4] J.C. McDowell, “Downloading the sky”, IEEE
Spectrum Online, 2004

[5] S. Pastore, Implementing a web services
architectural framework in a grid infrastructure
GESTS International Transactions on Computer
Science and Engineering, Vol. 18-20, N.1, 2005

[6] A. Volpato, et al., Astronomical database related
applications in the Grid.it project”, proc. of
Astronomical Data Analysis Software & System,
October 2004, Pasadena, California.

[7] S. Campana, M. Litmaath, A. Sciaba’, LCG-2
Middleware Overview, 498079, 2004.

[8] G. Taffoni, et al., Grid Data Source Engine: Grid
gateway to the Virtual Observatory,
Astronomical Data Analysis Software and
System XV, ASP Conf. Series, Vol. XXX, 2005.

[9] S. Pastore, The service discovery methods issue:
A Web Services UDDI specification framework
integrated in a grid environment, Special Issue
Journal of Network and Computer Applications,
Elsevier Science, to be published 2006

[10] J. Colgrave, K. Januszewski, "Using WSDL in
a UDDI Registry, Version 2.0.2 ", Technical
Note OASIS Spec TC, 2004

[11] N. Srinivasan, M. Paolucci and K. Sycara, An
Efficient Algorithm for OWL-S based Semantic
Search in UDDI Int. Work. on Semantic Web
Services and Web Process Composition, San
Diego, California, USA, 2004.

[12] Foster, I., et al. A Security Architecture for
Computational Grids. in 5th ACM Conference on
Computer and Communications Security. 1998.

[13] R. Alfieri, et al., From gridmap-file to VOMS:
managing authorization in a Grid environment“.
Future Generation Computer System 21 (2005)
549-558

[14] S. Pastore et al., Delivering secure web services
within INFN-GRID infrastructure by means of
EDG security, Proc. Of Workshop On Grid
security and experience, 2004

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 698

