
Requirements-driven Approach to
Service-oriented Architecture Implementation

ZELJKO PANIAN

The Graduate School for Economics and Business
University of Zagreb
J.F. Kennedy Sq. 6

CROATIA

Abstract: - This paper is an attempt to present an approach for transforming Service-Oriented Architecture (SOA)
principles from concepts to design and then to code. We present a systematic, requirements-driven approach for
designing and building a comprehensive framework for developing enterprise applications using the SOA principles.
Some of the key design considerations for SOA are identified, as well as the logical design elements required to
address design considerations.

Key-Words: - Service, Service-Oriented Architecture, Web Services, requirements-driven approach, orchestration,
management

1 Introduction
There is lot of literature on what Service-Oriented
Architecture (SOA) is, and so we will just cover this
topic very briefly. SOA concepts are primarily designed
to achieve the vision of an agile enterprise with a flexible
Information Technology (IT) infrastructure that enables
a business to respond to changes in the best possible
way. As the business dynamics change and new
opportunities emerge in the market, the IT infrastructure
of an enterprise should be designed to be able to respond
quickly and provide the applications needed to address
the new business needs before the business opportunity
disappears [1]. This is possible within reasonable costs
only through reuse of existing investments. This is where
SOA concepts come in; they are based on the principle
of developing reusable business services and building
applications by composing those services instead of
building monolithic applications in silos [2].

One of the best ways of enabling application
developers to understand concepts and put them to use is
by providing a framework that provides the
infrastructure needed while designing and developing
applications based on those concepts. Unfortunately,
there is not enough literature that can help application
architects and developers in the design and
implementation phases to build on the SOA concepts,
apart from those from product vendors, which mostly
explain in terms of their products/technologies.

So, naturally, there are fewer options for frameworks
that provide all of the basic building blocks needed to
build applications using SOA. In this paper, we attempt
to fill this gap by providing a systematic requirements-
driven approach to designing a framework for SOA.

2 SOA and Web Services
The advent of Web services has precipitated a
fundamental change in how IT infrastructures can be
developed, deployed and managed [3]. The success of
many Web services projects has shown that technology
does exist that can enable an enterprise to implement a
true SOA. It allows the enterprise to take another step
back and examine its application architecture—as well
as the basic business problems it is trying to solve. From
a business perspective, it is no longer just a technology
problem, it is a matter of developing an application
architecture and framework within which business
problems and implement solutions can be defined in a
coherent, repeatable way.

First, though, it’s important to understand that Web
services does not equal SOA. Web services is a
collection of technologies, including XML, Simple
Object Access Protocol (SOAP), Web Services
Description Language (WSDL) and Universal
Description, Discover and Integration (UDDI), which
allow the enterprise to build programming solutions for
specific messaging and application integration problems
[4]. Over time, these technologies can be expected to
mature, and eventually be replaced with better, more-
efficient, more-robust technology. But for the moment,
the existing technologies are sufficient, and have already
proven that an SOA can be implemented today [5].

An SOA is exactly what its name implies—an
architecture. It’s more than any particular set of
technologies, such as Web services. It transcends these
technologies – and, in a perfect world, is totally
independent of them [6]. Within a business environment,
a pure architectural definition of an SOA might be an

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 90

application architecture within which all functions are
defined as independent services with well-defined
invokable interfaces, which can be called in defined
sequences to form business processes [7].

Important components of this definition are:
• All functions are defined as services. This

includes purely business functions (such as create
a mortgage application or create an order),
business transactions composed of lower-level
functions (such as get credit report or verify
employment) and system service functions (such
as validate identification or obtain user profile).

• All services are independent. They operate as
“black boxes;” external components neither know
nor care how they perform their function, merely
that they return the expected result.

• In the most general sense, the interfaces are
invokable; that is, at an architectural level, it is
irrelevant whether they are local (within the
system) or remote (external to the immediate
system). It doesn’t matter what interconnect
scheme or protocol is used to effect the
invocation, or what infrastructure components are
required to make the connection. The service may
be within the same application, or in a different
address space within an asymmetric
multiprocessor, on a completely different system
within the corporate intranet, or within an
application in a partner’s system used in a B2B
configuration.

In an SOA, the interface is the key, and it is the focus
of the calling application. It defines the required
parameters and the nature of the result. This means that
it defines the nature of the service, not the technology
used to implement it. The system must effect and
manage the invocation of the service, not the calling
application.

This function allows two critical characteristics to be
realized: first, that the services are truly independent,
and second, that they can be managed. Management
includes many functions:

• Security, to authorize requests, encrypt and
decrypt data as required, and validate information.

• Deployment, to allow the service to be moved
around the network to maximize performance or
eliminate redundancy to provide optimum
availability.

• Logging, to provide auditing, metering and
evaluating capabilities.

• Dynamic rerouting, to provide fail-over or load-
balancing capabilities.

• Maintenance, to manage new versions of the
service.

3 SOA Implementation Framework
 Design
One of the first activities in designing a SOA
implementation framework is to have an approach that
helps in arriving at the desired objective systematically
[8]. There should be a clear vision and goal, a set of core
guiding principles, and a systematic process.

The goal is to provide a framework with the
infrastructural components needed to develop enterprise
applications based on SOA concepts. Some of the core
guiding principles that will be used include [9]:

• Should be driven by requirements.
• Should be simple to use.
• Should be standards-based and pattern-driven.
• Should be practical.
• Should not become outdated quickly.
• Should buy/reuse anything existing instead of

building it again.
 Our suggestion is to first identify the significant
requirements for developing services, and then to
identify the key design elements needed to address those
requirements, based on applicable design patterns. Then,
define a framework that provides the basic design
elements identified.

From a technical perspective, the core principle of
SOA is that, to use some functionality, a service
consumer should be able to look up a service that
provides that functionality and use it [10].

The design implications are:
• Service design should be interface-driven. The

focus of such an interface should be the
requirements of the functionality to be provided
exposed as a reusable service.

• There should be a well-defined service lookup
mechanism that the service consumers can use to
get a handle to the implementation of the service
interface.

• The user code should not be tied to the
implementation specifics of the service. Ideally,
user code should not change if the technology
used for the service implementation changes or if
the underlying implementation logic is subject to
change.

• The user code should not have to deal with the life
cycle aspects (ideally all aspects) of a service like
creating, initializing, configuring, deploying,
locating, and managing a service. There should be
well-defined mechanisms that take care of
creating, initializing, configuring, deploying, and
managing a service that finally provides a
mechanism for the end user to look up the service
and use it [11]. There should also be mechanisms
that will allow for defining other service aspects,
like access control to the services or audit of

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 91

service access where the user can plug in their
logic [12].

The framework should standardize the definition,
initialization, deployment and configuration, and
management of services to address these requirements.

One of the key aspects that the framework should be
addressing is providing a unified interface for all of the
multiple technology options available for
implementation services such as Enterprise Java Beans
(EJB), .NET, mainframe-technology-based, etc.

A framework that enables an enterprise to implement
its applications using SOA should therefore enable the
service providers to define the service and the users to
look up and use the service in a standard and consistent
way and then take care of all of the "aspects" of the
services.

4 The Framework Components
 Required to Implement SOA
The architecturally significant features of the framework
are:

• A clearly defined mechanism to define a service
interface with the available operations and input
and output parameters.

• A registry of services that the service providers
can use to register their service implementations
and that the service consumers can use to look up
a service implementation.

• An enterprise service bus (ESB) into which the
service implementations can plug in and out, and
which supports multiple calling semantics (such
as synchronous, asynchronous etc.), and features
like transformation, routing, etc.

• A well-defined service orchestration mechanism
to take care of flow-based and long running
interactions.

• A well-defined mechanism that takes care of
service aspects such as configuration,
management, access control, audit, etc.

• Well-defined service invocation mechanisms with
adaptors that will allow the service to be invoked
and implemented through multiple different
technologies.

4.1 Service Definition
One of the first things that the framework should provide
is a standard mechanism for defining the service
interface with the various requests supported and the
request and response parameter data formats.

The enterprise architecture teams usually establish
the mechanism to use for defining the service interface
in an enterprise. Since most enterprises use applications
and systems that are implemented using multiple

technologies and platforms, most enterprises select an
XML-based mechanism to define the service interface.
Web Services Definition Language (WSDL) is an
industry standard for defining the service interface, but it
is not necessarily the only way; there are several
enterprises that already have existing XML formats for
the defining service interfaces [13].

From the service provider's perspective, the
framework should provide support for designing a
service implementation. The framework should define a
mechanism and, if possible, tools that help keep the
service interface defined in the Enterprise Message
Format (EMF) synchronized with the service
implementation. Similarly, from the service consumer's
perspective, the framework should provide the
components to define a service stub to represent the
Service Interface that is specific to the service consumer
implementation.

So, for a Java-based implementation, there should be
a mechanism to create a Java interface, and a stub and
proxy implementing the interface and encapsulating the
service invocation specifics. The stub and the proxy help
insulate the service usage and service provider code from
the service definition formats and the invocation
specifics [14]. The framework should provide a tool that
can generate the implementation code from the service
definition and vice versa.

It's possible to design a generic stub that can
represent any service, but the first choice should be a
strongly typed interface for each service, to help in
compile-time checks and in better object-oriented
design. If, say, an attribute in the message changes, then
the re-generated service interface can help identify
problems at compile time instead of causing a costly
runtime debug exercise. The dynamic stubs should only
be used for scenarios where a service is used as a generic
service.

The framework components for service definition are
shown in Figure 1.

Enterprise
Service
Message
Format

Covertor
Service

Interface

Coversion
Rules

Service Stub

Fig. 1 – Service Definition

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 92

Having these mechanisms defined helps maintain
consistency in service definition and usage across
projects and also helps in service specification
management later during the maintenance phase.

4.2 Service Registry
One of the important requirements to be addressed by
the framework is to provide a Service Registry with
details of the service interfaces and the service providers.
It should also provide a standard mechanism for the
service providers to register their implementation of a
service interface and for the service consumers to look
up the implementation of a service interface.

This mechanism is illustrated in Figure 2.

Service
Registry

Service
Provider

Service
Consumer

Repository

Service Stub Service Proxy

Service Interface

Fig. 2 – Service Registry Mechanism

The framework needs to provide a Service Registry

design element that provides the Application Program
Interface (API) to register and look up the Service Stubs
that implement the service interface [15]. The Service
Stub encapsulates the invocation details for the
consumers and interacts with the Service Proxy that
encapsulates the invocation details for the service
providers. The service invocation details are explained in
the next section.

4.3 Service Invocation
The next important requirement to be addressed by the
framework is to standardize the service invocation
mechanism and provide the infrastructural components
with clearly defined interfaces that shield the service
consumers and the service providers from the underlying
implementation details.

Usually, enterprise architecture teams define the
communication policies for applications in an enterprise.
The communication policies define the strategies on
when to use native protocols, when to use point-to-point

communication, and when to use message-oriented
communication. A common debate while determining
communication policies is whether to use message-
oriented communication to invoke a service or to
directly invoke the service using its implementation-
specific synchronous protocol such as RMI. One of the
fundamental business requirements is to differentiate the
service levels offered to the end customers based on their
business value to enterprise, so that it helps achieve the
desired client experience business objectives.

This is technically possible only if the
communication mechanism used in invoking services is
controlled and the service invocations can be prioritized.
Using message-oriented communication instead of
directly invoking the service using its implementation-
specific synchronous protocols thus provides the
mechanism needed to address this requirement.
Strategically, the preferred communication mechanism
should be one based on a messaging infrastructure
instead of point-to-point invocations.

The infrastructural logical components that are
needed for service invocation include:

• Service Stub
• Service Proxy
• Adaptors
• Message Broker
• Message Bus
• Gateways
The Service Stub implements the delegate pattern

and provides the service interface to the service
consumers, hiding the invocation details.

The Service Proxy implements the proxy pattern and
provides the abstraction of the invocation details for the
service providers.

The Adaptors provide the technology-specific
integration mechanisms for the service stubs and
proxies. The adaptor can provide the listener
mechanisms that the stubs and proxies can use to receive
the messages and the API to send a message.

The Message Broker and the Message Bus provide
the transformations, routing, and other such services.
The broker and the bus take care of transforming the
message representations from the service consumer and
service provider internal formats to the Enterprise
Message Format and vice versa. They also provide the
routing of the messages, store and forward, message
retries, prioritizing of messages, etc.

The Gateways provide the mechanisms for external
integration. The gateways provide the single points of
contact for the external partners and transform the
invocation protocols and message formats from the
external partners to the internal enterprise message
formats using a message broker and an adaptor. They
also enforce the security checks, audit requirements, etc.

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 93

Having clearly defined interface driven components
for each of these helps replace implementations with
minimal impacts.

4.4 Service Orchestration
Further important requirement to be addressed is the
orchestration of services for the implementation of a
business process.

The framework should provide a mechanism tools to
define, execute, and manage the service orchestration.
The framework should define an Orchestration Adaptor
that helps abstract the interactions with the orchestration
implementations (Business Process Management tools)
through an adaptor interface with an API to initiate
processes, get the list of process instances, get the list of
activities and their states, and to manipulate the state of
activities, list of exceptions and unusual conditions, etc.
that provide an abstraction over the implementation
specifics [16].

The adaptors can then be implemented for the
selected orchestration implementation. Since they all
provide the same API, they can be replaced easily as
needed without greatly impacting the services interacting
with the orchestration component.

4.5 Service Management
The next important requirements to be addressed include
providing a standard mechanisms for management of the
services, for configuration of services, for taking care of
the cross-cutting concerns like the access control, audit,
etc. that apply to all or most service requests driven by
centralized policies.

The diagram in Figure 3 shows some of the
components that the framework needs to define/provide
to address these all of these requirements.

Service

Interface
Service

Manegement
Interface

Service
Configuration

Service
Configuration

Reader
Service
Filter

Service
Factory

Service
Proxy

Service
Stub

Service
Manager

Figure 3 – Service Management

To address manageability requirements, the
framework should define a standardized mechanism to
design the Service Management Interface for the
services and to make the service proxy provide an
implementation of the management interface of the
service and then provide a Service Manager component
with the mechanism to make the service management
interfaces accessible through standard management
tools.

One of the common requirements in service design is
to ensure that the service is configurable so that a service
instance can be localized to a particular context and
deployed [17]. The framework should therefore provide
a standard mechanism for service configuration. The
framework should define a standard Service
Configuration Format, a Service Configuration Reader
component, a Service Configuration component to
represent and hold the service configuration information,
and a Service Factory component that takes care of the
creation of the service, loading the service configuration,
and initializing the service with the desired
configuration.

The framework should provide a mechanism to allow
the separation of the service core functional logic from
the logic for enforcing the cross-cutting concerns like
access controls, audits, etc. The framework should
define a Service Filter component that can be plugged
into the service invocation mechanism at service proxy
to intercept the service requests and apply the Quality of
Service (QoS) aspect logic.

4.6 Implementation
The last step is to implement the framework with the
various design elements identified earlier. Using the
"buy instead of build" principle, it makes sense to first
evaluate what can be leveraged off the shelf, and then
build the missing components on top of the selected
implementations.

5 Conclusion
The paper presented an approach to transform Service-
Oriented Architecture (SOA) concepts to appropriate
implementation through a comprehensive framework.
Some of the key design considerations for SOA are
identified, as well as the logical design elements required
to address design considerations and the framework that
provides the basic components needed.

The primary intention was to present a systematic,
requirements-driven approach to developing an
enterprise application framework for SOA and take it
from concepts to the design-elements level. The next
steps in research would require further investigation of
the deployment opportunities, constraints and limitations

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 94

to the proposed approach. It would also be necessary to
evaluate the real-world potentials, strengths, and
weaknesses of the framework modelled.

References:
[1] Leffingwell, Dean; Muirhead, Dave, Tactical

Management of Agile Development: Achieving
Competitive Advantage, http://www.rallydev.com,
2004

[2] Fiorano Staff, Business Component Architecture –
Driving Business Agility, Fiorano
(http://www.fiorano.com), 2005

[3] Clabby, Joe, Web Services Explained, Prentice Hall
PTR, 2003

[4] Newcomer, Eric, Understanding Web Services:
XML, WSDL, SOAP, and UDDI, Addison-Wesley,
2002

[5] Panian, Željko, Creating Agile Business through
Service-Oriented Architecture, Proceedings of the
IPSI 2006 Conference, Marbella (Spain), February
2006, pp 140-146

[6] Finkelstein, Clive, The Enterprise: Service-Oriented
Architecture (SOA), DM Review, No. 1/2005

[7] Kaye, Doug, Loosely Coupled: The Missing Pieces
of Web Services, RDS Press, 2003

[8] Bloomberg, Jason, The SOA Implementation
Framework: The Future of Service-Oriented
Architecture Software, ZapThink
(http://www.zapthink.com), April 2004

[9] Morgenthal, J. P., Enterprise Architecture: The
Holistic View: In a SOA Universe, How Important is
Platform Selection?, DM Review, No. 7/2005

[10] Thomas Manes, Anne, Web Services: A Manager's
Guide, Addison-Wesley, 2003

[11] Kelly, David A., What You Need to Know About
Transitioning to SOA, http://www.ebizQ.net, 2005

[12] Roguewave Staff, Leveraging C++ Business Logic
In a Service-Oriented Application, Roguewave
(http://www.roguewave.com), 2004

[13] Marks, Eric. A., Werrell, Mark J., Executive's
Guide to Web Services, John Wiley & Sons, Inc.,
2003

[14] Kelly, David; Ashton, Hather, J2EE Service
Management: Are You Ready?,
http://www.upsideresearch.com, 2005.

[15] Infavrio Staff, The Web Service Registry, key to a
successful SOA, Infavrio (http://www.infavrio.com),
September 2004

[16] CapeClear Staff, Principles of BPEL, Orchestration,
and the ESB, CapeClear (http://www.capeclear.com),
2004

[17] Kay, Russell, QuickStudy: SOA, Computer World,
No. 03/2004, pp 12-16

Proceedings of the 6th WSEAS International Conference on Multimedia, Internet & Video Technologies, Lisbon, Portugal, September 22-24, 2006 95

