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Abstract: - Data assimilation schemes as commonly used in numerical circulation models are approximated 
in terms of stochastic processes. This approximation consists of random sequences of Markov chains, which 
converge to a diffusion-type process. The conditions for this convergence are investigated. The optimisation 
problem and a numerical experiment are discussed. 
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1   Introduction

In numerical modelling of geophysical 
systems, such as the ocean, the atmosphere or the 
climate system, data assimilation is a common and 
important approach. It produces the initial conditions 
for weather and climate models and complements 
monitoring by correcting model variables in the 
direction of observations. Such a correction of the 
model output by observational data is generally based 
on a scheme of the following type: 
A system of partial differential equations, usually 
represented in finite-difference or finite-element form 
is considered on the time-interval ( ). In general, 

 may be associated with 0, while T, provided it is 
large enough, may be considered as infinity. The 
interval ( ) can be broken into intervals ( , 

( ), …, ( )… On any time-interval ( ) 
model starts at moment with initial state-vector 
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nθ and integrates forward until moment , when it 

produces (predicts) the state-vector . Here and in 
the following the superscript m indicates that the 
system-state has been obtained by model integration is 
considered in contrast to other sources of information. 
During the time-interval ( t ) a series of 

observations enters as the vectors  
independently of the model. Here, the indices (k,n) 
denote the k- vector on n-th time- interval. Usually, 
vector is a subset of vector 
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output is corrected by observations according to m
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Here, denote the model variables, corresponding to 
observations, calculated at observation time. The 
weight functionsα will generally also depend on time 
and are either known a priori, or are determined by 
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some appropriate algorithm. The corrected state-vector 
1+nθ  is now taken as the new initial condition and the 

model integration resumes. 
 Under the name data assimilation methods 
various versions of the aforementioned scheme are 
commonly used in geophysics. In particular, the 
Kalman filter approach determines the optimal weight-
coefficient iα  utilising the statistical properties of 
observational data [1]. Alternatively, the observations 
may not be considered as random. In this case, the 
optimal weights may be determined according to 
variational or adjoint data assimilation technique [1]. 
The integration-intervals can be considered as given 
(e.g., the model produces the forecast every 24 h), or 
random, i.e., the correction is applied if the model 
temperature difference between ocean and atmosphere 
exceeds a certain, a priori chosen limit. 
 Despite these and other differences, all these 
methods follow essentially the scheme mentioned 
above. Alternatively, it turns out interesting to review 
these techniques from a different point of view. At the 
“moment of assimilation” the time- series of variables 

nθ undergoes a jump of its trajectories. What will 
happen if the interval between consecutive 
assimilations approaches zero along with the values of 
the jump? How does the limiting behaviour of the 
trajectories depend on the number of state variables 
and their distributions? Under which conditions does 
the limiting distribution of nθ  exist as T goes to 
infinity and what is it? If it exists, it is called the 
stationary distribution. These and similar questions not 
only attract interest from the theoretical point of view, 
but also for practical reasons. For instance, knowing 
the limiting behaviour of the time series for 

, it becomes easy to calculate 
various parameters needed for the weather forecast, 
while known stationary distribution enhances the 
reliability of climate prediction. In addition, the 
knowledge of this limit may simplify the optimisation 
problem for weight coefficients, which generally are 
the extremum of given function, e.g., the error 
variance. 

01 →−=Δ + kkk ttt

 The aim of the present paper is to prove that 
under appropriate conditions the trajectories nθ as 
function of time converge to the trajectories of the 
stochastic diffusion process. These are continuous 
functions satisfying the Fokker-Planck equation. This 
characteristic provides a tool for the determination of 
properties of the limiting trajectories, such as their 
maxima. Furthermore, the optimisation problem of the 
best weight coefficients-satisfying the unbiased and 
minimum variance estimate- is solved. Finally, for an 

illustration of the feasibility and usefulness of this 
method a numerical experiment is performed. The 
present work is based on the classical theorem of 
convergence of Markov chains to diffusion processes 
[3]. 
 
 
2   Main definitions and notations 
Throughout the paper, the following notations are 
used. Let the system of equations  

),()( t
t
t θθ

Λ=
∂

∂
                                             (1) 

be considered on the time-interval ( ). Without 
loss of generality, in further references will be 
associated with 0, while T may be both finite and 
infinite. In (1), 

Tt ,0

0t

)(tθ represents the random state-vector 
of dimension r defined on a given probability space, 
while ),( txΛ denotes non-random, generally non-
linear operator, acting in rR , which does not explicitly 
involve temporal derivatives. Symbol {′} denotes the 
transpose of a corresponding vector and/or matrix, the 
symbols | | or || || represent a vector or matrix norm, 
respectively. A sequence of time-series is considered, 
such that in each series the interval (0,T) is broken into 
time-points ( ,..,..., ,2 nn t,0 ,,1,0 nkn ttt= ), where the first 
index denotes the ordering number of the 
corresponding point, while the second index refers to 
the time-series. It is supposed that in each series on the 
interval nkt ,Δ = nknk tt ,,1 −+  , the number of random 

vectors ( ), l = 0, 1,…,...,...1
n
l

n ξξ nν  with dimension q, 

q≤r are entered, where nν  is also a random integer 
variable with given distribution , 

independent of vectors . Knowing the solution of 

system (1), , for the initial vector,  on 
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)( ,

0
,

mn
l

n
l

l
nl

n
k

n

θξαζ
ν

−= ∑
=

                                 (2) 

In (2), the matrixes nl ,α  with dimension r x r referred 
to as weight coefficients are supposed to be known 
and depend on the time-series.  

For the consistency of (2), it is necessary that 
the vectors and have the same dimension q, 
which may differ from the dimension of the vector 

n
lξ )(, tmn

kθ

)(tθ of dimension r. However, without loss of 
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generality, it will be assumed that  has the same 

dimension as , setting the “dummy” components of 

vectors and to zero. Ultimately, the new 

state variables  are defined by the formula 
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Now this  is taken as the initial conditions in (1) 
for the continuation of the integration. 

n
k 1+θ

In this manner, it becomes possible to obtain 
the sequence of trajectories defined over entire 
interval (0,T). Starting from some known random 
vector , the solution of (1) on each 
interval  with breaks at moments 

can be evaluated. The main goal of the present 
paper is to determine the limiting behaviour of 
solution (3) when . 

)(tnθ

n
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3   Main formulations 

The time-lattice  is 
considered as non-equidistant, real values in each 
series. The following statements are introduced. 

nknknk ttt ,,1, −=Δ +

A1. The intervals →0 approach zero 
uniformly with respect to k, i.e. 
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 A3. Random vectors have two plus 
δ for some δ moments for each n, i.e. 
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 A4. Operator  is a continuos function 
of its arguments. 

),( txΛ

 A5. The set of weight coefficients nl ,α are 

bounded uniformly with respect to n, ∞<||||lim ,nlα , 
l=1,2… 
 A6. The sequence of distributions of random 
variables converges to the distribution of some 

random variable , i.e. 

 for each x as n→∞. 

n
0θ

0θ
∞→<→< nxPxP n ),()( 00 θθ

Without loss of generality, the limit values of the 
variables and n

ij
n
i γλ ,1 nl ,α  when n tends to infinity are 

supposed to exist and to be equal, respectively, to 
 and iji γλ ,1 lα . Otherwise, the corresponding 

subsequence can be chosen to provide the convergence 
to the limit points, which exist as a consequence of the 
conditions A3 and A5.  
 
3.1 Theorem 1  
 Let the conditions A1-A6 hold. Then the 
sequence of finite-dimensional distributions of random 
processes  converges to the stochastic process, 
which will be a solution of the stochastic differential 
equation 
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The Wiener process w(t) is defined on the interval 
(0,T) and is independent of random variable 0θ .  
 Remark. All parameters γλα ,,,p  depend, in 
general, on both t and x. To simplify the notation, this 
dependence is not explicitly shown. This theorem is 
easily generalised on the case when a random index ν 
is a vector with different distributions for each 
component, i.e. ),...()( 11 rr lvlplp ==== νν .  
 Corollary 1.  
 If no observations are assimilated, 
a(t,x)=Λ(t,x) and b(t,x)=0. Thus, the limiting diffusion 
process coincides with the model simulation, which 
has to be expected.. 
 Corollary 2. 
 The probability distribution of the trajectory is 
determined by the Fokker-Planck equation 
(Kolmogorov’s second equation) 

2
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                                                                                 (7) 
with the initial conditions )(),0( 0 xpxp == θ  and 
boundary conditions . 0),( =±∞tp
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In (7) the drift vector and the diffusion matrix 
 are given by (5) and (6). 

),( xta
),(2 xtb

 
 
4   Optimisation problem 
 In the previous section, the convergence of a 
sequence of random variables was considered where 
all parameters were fixed. However, in practical 
applications, some parameters may not be known, but 
rather be sought according to a given criteria. The 
most relevant physical problem is the determination of 
optimal weight coefficients lα . By Theorem 1, the 
limiting trajectories will be those of the diffusion 
process, with the drift vector and the diffusion 
matrix , which determine its mean and 
variance. More precisely, the following equalities are 
valid: 
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These relations lead to the investigation of the 
optimisation problem under the following constrains: 
Let the scheme of the previous paragraph be 
considered. The conditional average and conditional 
variance of each of the member of the Markov chain 
will be a function of weight coefficients nl ,α . The 
problem is to define those coefficients such that the 
variance is minimised while the average remains 
unchanged. This is the well-known problem of 
constraining the unbiased estimator with minimum 
variance.  
 
4.1 Theorem 2 

Let the conditions of Theorem 1 A1-A6 hold. 
Also, let, be the coefficients that provide the 
minimum norm of conditional variance 

, while the conditional 

average  remains fixed and 
equals C in each series. The numerical sequence 

will then converge to the coefficients , 
satisfying the system of equations with the unknown 
vector Φ=
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where  denotes the s-th component of the vector 

; denotes the qs-th element of matrix . 
sia )(

ia qsib )( ib
Given any constant C, system (8) has a unique 
solution for  and Φ. l

∗α
Remark. Statistically, the constant C measures the 
model bias with respect to the observations. This bias 
can be eliminated from the algorithm if it is known or 
if it is previously determined.  
 
5   Numerical experiment 

In this section, a numerical experiment is 
presented as illustration of the applicability of 
theorems 1 and 2. The heat equation is utilised as part 
of the hidro-dynamical numerical model AusCOM, a 
version of the Geophysical Fluid Dynamics 
Laboratory (GFDL/NOAA) model MOM4,  

),()),((),( 22 xtkxtu
t

xt θθθ
∇+−∇=

∂
∂

             (9). 

Here, ),( xtθθ = is temperature; xt,  denote temporal 
and spatial coordinates, u is a known velocity vector, 

 are the gradient and the Laplace operators, 
respectively, and  is a given viscosity coefficient. 
The bar over x distinguishes a 3-dimensional spatial 
point from its coordinate. Considering equation (1) 

2,∇∇
2k

),( t
t

θθ
Λ=

∂
∂

, 

equation (9) takes the form 
),()),((),( 22 xtkxtut θθθ ∇+−∇=Λ .  

 Starting from known initial conditions 0θ , 
equation (9) is solved numerically. Independently, 
three temperature profiles are chosen from the 
TOGA/TAO array dataset (downloaded from 
http://www.pmel.noaa.gov/tao). The scheme proposed 
above addresses infinitesimal characteristics. Hence, 
temperature variability on the time-frame of one day 
(24 hours) is considered.  

Fig1 shows the temperature profiles of the 
differences between two consecutive days of 
observational data, taken at the coordinates: (156 
°45’E, 0° 30’N); (156° 52’E, 1° 0’N); (157° 24’E, 
0°36’N), together with the model profile. The model 
was started from the average over these 3 temperature 
profiles and the model results is considered at the 
point with coordinates (156,5° E, 0.3°N). On the 
AusCom grid, this is the nearest point to the 
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observations. Model profile is given by the red curve, 
while observations are in green, white and yellow.  

 

 

 
Fig.1. Vertical profiles of temperature differences given by observations at (156 °45’E, 0° 30’N); (156° 52’E, 

1° 0’N); (157° 24’E, 0°36’N) in green, white and yellow; and by the model at (156,5° E, 0.3°N) in red. 
 

The optimisation scheme has been applied to the 
vectors 321 ,, ξξξ , which are the temperature 
differences profiles with 5-components corresponding 
to temperature values at 0, 10, 25, 50 and 100 m. The 
probability parameters were 3,0,13 ≠== ipp i . All 

other necessary parameters required have been 
determined from observations and model. The 
calculations with respect to formulae (8), then (2) and 
(3) lead to the results presented in Fig. 2. 
 

 

 
Fig.2. Vertical profiles of temperature given in white by the average of the three observed temperature profiles shown 
in Fig. 1; in green by the model; and in yellow by the data assimilation scheme. 

 
Fig. 2 shows the average profile of the three 

temperatures shown in Fig. 1, marked by white cycles. 
The model profile is shown in green and the optimal 
correction followed from (8), (2) and (3), in yellow. It 
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is clearly seen that the optimal curve lies between the 
model and observation and it resembles the shape of 
observation curve. This is to be expected since, by 
construction, the optimal curve conserves the average. 
It is noted that one realisation among possible profiles 
is shown and its trajectory has a definite probability 
according to the Fokker-Planck equation (7).  
  
 
6 Conclusions 

The results presented here are of both 
theoretical and practical interest. From the theoretical 
point of view, it is important to know when and under 
which conditions the curve, given as a solution of 
differential equations (1) along with the correction (2), 
may be approximated by a continuos function, and 
how the probability of the limit function could be 
calculated. In practical applications, the scheme can be 
utilised to determine a variety of relevant parameters 
such as the probability of extremes, probability for 
crossing some levels and similar issues. Also, the 
optimisation scheme may open a new approach to the 
data assimilation problem, since the method merely 

requires the solution of linear system of equations with 
simple-form matrix. However, a number of non-trivial 
questions remain unsolved. For instance, how is the 
distribution of statistics to be calculated if all 
parameters are taken from the observed sample? Other 
topics refer to the applicability of the method. It is 
clear, for instance, that two consecutive assimilations 
should be fairly close in time in order to apply the 
limit theorem. This and other issues may be 
investigated in a later time and were not within the 
scope of the present work. 
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